Preliminary Notions

A complete summary of preliminary notions in pre-university algebra, including basic operations (addition, subtraction, multiplication, division), sign rules, exponent properties, notable equivalences, and fundamental theorems. Ideal for quick review or reference during pre-university studies.

Addition and Subtraction

Tip

Distributive Property

a(b+c)=ab+aca(b + c) = ab + ac

Multiplication

Sign Rules

Tip

(+)(+)=(+)(+) \cdot (+) = (+)

()(+)=()(-) \cdot (+) = (-)

(+)()=()(+) \cdot (-) = (-)

()()=(+)(-) \cdot (-) = (+)

Tip

Associative Property

a(bc)=(ab)ca \cdot (b \cdot c) = (a \cdot b) \cdot c

Exponent Properties

aman=am+na^{m} \cdot a^{n} = a^{m+n}

(ab)n=anbn(a \cdot b)^{n} = a^{n} \cdot b^{n}

(am)n=amn(a^m)^n = a^{m \cdot n}

(aαbβ)n=aαnbβn(a^{\alpha} \cdot b^{\beta})^n = a^{\alpha n} \cdot b^{\beta n}

Notable Equivalences

(a±b)2=a2±2ab+b2(a \pm b)^2 = a^2 \pm 2ab + b^2

(a+b)(ab)=a2b2(a+b)(a-b) = a^2 - b^2

(x+a)(x+b)=x2+(a+b)x+ab(x+a)(x+b) = x^2 + (a+b)x + ab

Division

Sign Rules

Tip

(+)(+)=(+)\frac{(+)}{(+)} = (+)

()(+)=()\frac{(-)}{(+)} = (-)

(+)()=()\frac{(+)}{(-)} = (-)

()()=(+)\frac{(-)}{(-)} = (+)

Exponent Properties

aman=amn(a0)\frac{a^{m}}{a^{n}} = a^{m-n} \quad (a \neq 0)

(ab)n=anbn(b0)\left( \frac{a}{b} \right)^n = \frac{a^n}{b^n} \quad (b \neq 0)

(aαbβ)n=aαnbβn(b0)\left( \frac{a^\alpha}{b^\beta} \right)^n = \frac{a^{\alpha n}}{b^{\beta n}} \quad (b \neq 0)

Fundamental Theorems

Tip

Inverses

an=1ana0a^{-n} = \frac{1}{a^n} \quad \text{; } a \neq 0

0n0^{-n} is undefined for n>0n > 0.

Tip

Distributive Property

a+bc=ac+bc(c0)\frac{a + b}{c} = \frac{a}{c} + \frac{b}{c} \quad (c \neq 0)

Operations with Fractions

Condition: y,z,w,k0y, z, w, k \neq 0

xy=x(1y)\frac{x}{y} = x \left( \frac{1}{y} \right)

(xy)(wk)=xwyk\left( \frac{x}{y} \right) \left( \frac{w}{k} \right) = \frac{xw}{yk}

xywx=yw\frac{xy}{wx} = \frac{y}{w}

xy+zy=x+zy\frac{x}{y} + \frac{z}{y} = \frac{x + z}{y}

xy+wz=xz+ywyz\frac{x}{y} + \frac{w}{z} = \frac{xz + yw}{yz}

xy÷wz=xzyw\frac{x}{y} \div \frac{w}{z} = \frac{xz}{yw}

x+yw=xw+ywx + \frac{y}{w} = \frac{xw + y}{w}

Important Notes

Key Restriction

Division by zero is undefined. All denominators must be 0\neq 0.

Useful Equivalences

ab=ab=ab-\frac{a}{b} = \frac{-a}{b} = \frac{a}{-b}

a+bc+xy=a+bcy+xy=a+bycy+x(cy+x0)a+\frac{b}{c+\dfrac{x}{y}}=a+\frac{b}{\dfrac{cy+x}{y}}=a+\frac{by}{cy+x} \quad (cy + x \neq 0)