Fundamental Concepts

Comprehensive summary of fundamental concepts in analytic geometry, including the Cartesian plane, quadrants, point representation, distance calculations (in rectangular and polar coordinates), midpoint, segment division, centroid of a triangle, and formulas for the areas of triangles and polygons. Includes illustrative images and key mathematical formulas.

Cartesian Plane

Cartesian Plane

  • Rectangular coordinate system: xx-axis (abscissa) and yy-axis (ordinate)
  • Origin: point (0,0)(0,0)

Quadrants

Quadrants

  • Four quadrants numbered I to IV counterclockwise
  • Signs:
    • Quadrant I: (+,+)(+,+)
    • Quadrant II: (,+)(-,+)
    • Quadrant III: (,)(-,-)
    • Quadrant IV: (+,)(+,-)

Points

  • Representation: P(x,y)P(x,y)
    Points
  • Special points:
    • Origin: O(0,0)O(0,0)
    • On the xx-axis: (a,0)(a,0)
    • On the yy-axis: (0,b)(0,b)

Distance Between Two Points

For P1(x1,y1)P_1(x_1,y_1) and P2(x2,y2)P_2(x_2,y_2):
Distance Between Two Points

d=(x2x1)2+(y2y1)2d = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2}

Distance Between Two Points in Polar Coordinates

Given two points in polar coordinates:

  • P1(r1,θ1)P_1(r_1, \theta_1)
  • P2(r2,θ2)P_2(r_2, \theta_2)
    Distance Between Two Points in Polar Coordinates

The distance dd between them is:

d=r12+r222r1r2cos(θ2θ1)d = \sqrt{r_1^2 + r_2^2 - 2r_1r_2 \cos(\theta_2 - \theta_1)}

Midpoint

Midpoint MM between P1(x1,y1)P_1(x_1,y_1) and P2(x2,y2)P_2(x_2,y_2):
Midpoint

M(x1+x22,y1+y22)M\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)

Division of a Segment in a Given Ratio

Division of a Segment in a Given Ratio

Point PP dividing the segment P1P2P_1P_2 in the ratio P1PPP2=mn=λ\frac{P_1P}{PP_2}=\frac{m}{n}=\lambda:

x=nx1+mx2n+m=x1+λx21+λ,y=ny1+my2n+m=y1+λy21+λx=\frac{nx_1+mx_2}{n+m}=\frac{x_1+\lambda x_2}{1+\lambda},\quad y=\frac{ny_1+my_2}{n+m}=\frac{y_1+\lambda y_2}{1+\lambda}

P(x1+λx21+λ,y1+λy21+λ)P\left(\frac{x_1+\lambda x_2}{1+\lambda }, \frac{y_1+\lambda y_2}{1+\lambda }\right)

Coordinates of the Centroid of a Triangle

Coordinates of the Centroid of a Triangle

x=x1+x2+x33x=\frac{x_1+x_2+x_3}{3}

y=y1+y2+y33y=\frac{y_1+y_2+y_3}{3}

Area of a Triangle

Area of a Triangle

Given the vertices (x1,y1)(x_1, y_1), (x2,y2)(x_2, y_2), and (x3,y3)(x_3, y_3), the area is:

Area=12x1y11x2y21x3y31\text{Area} = \frac{1}{2} \left| \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \\ \end{vmatrix} \right|

Where the determinant is calculated as:

x1y11x2y21x3y31=x1(y2y3)y1(x2x3)+1(x2y3x3y2)\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \\ \end{vmatrix} = x_1(y_2 - y_3) - y_1(x_2 - x_3) + 1(x_2 y_3 - x_3 y_2)

In practice, it simplifies to:

Area=12x1(y2y3)+x2(y3y1)+x3(y1y2)\text{Area} = \frac{1}{2} \big| x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \big|

Example

Given vertices P1(2,4)P_1(2, 4), P2(5,6)P_2(5, 6), and P3(3,1)P_3(3, 1):

  1. Construct the matrix:

    241561311 \begin{vmatrix} 2 & 4 & 1 \\ 5 & 6 & 1 \\ 3 & 1 & 1 \\ \end{vmatrix}

  2. Calculate the determinant (Sarrus' rule):

    =2(6111)4(5131)+1(5136)= 2(6 \cdot 1 - 1 \cdot 1) - 4(5 \cdot 1 - 3 \cdot 1) + 1(5 \cdot 1 - 3 \cdot 6)

    =2(61)4(53)+1(518)= 2(6 - 1) - 4(5 - 3) + 1(5 - 18)

    =2(5)4(2)+1(13)=10813=11= 2(5) - 4(2) + 1(-13) = 10 - 8 - 13 = -11

  3. Take the absolute value and divide by 2:

    Area=1211=5.5 u2\text{Area} = \frac{1}{2} |-11| = 5.5 \text{ u}^2

Area of a Polygon

Area of a Polygon

General Formula (Shoelace Formula)

For vertices (x1,y1),(x2,y2),,(xn,yn)(x_1,y_1), (x_2,y_2), \ldots, (x_n,y_n):

Area=12i=1n(xiyi+1)i=1n(yixi+1)\text{Area} = \frac{1}{2} \left| \sum_{i=1}^{n} \left( x_i y_{i+1} \right) - \sum_{i=1}^{n} \left( y_i x_{i+1} \right) \right|

where:

  • xn+1=x1x_{n+1} = x_1 and yn+1=y1y_{n+1} = y_1 (closes the polygon).
  • Vertices must be ordered clockwise or counterclockwise (no crossings).

Steps to Apply the Formula:

  1. Ordered list of vertices: Write the coordinates in order (e.g., P1P2P3P1P_1 \to P_2 \to P_3 \to \dots \to P_1).
  2. Sum 1 (Σ1\Sigma_1): Multiply each xix_i by the yy of the next vertex (yi+1y_{i+1}) and sum them.
  3. Sum 2 (Σ2\Sigma_2): Multiply each yiy_i by the xx of the next vertex (xi+1x_{i+1}) and sum them.
  4. Subtract and take absolute value: Calculate Σ1Σ2|\Sigma_1 - \Sigma_2| and divide by 2.
Example

Vertices in order: P1(2,4)P_{1}(2, 4), P2(5,6)P_{2}(5, 6), P3(3,1)P_{3}(3, 1), P4(1,2)P_{4}(1, 2).

  1. Close the polygon by repeating P1P_{1} at the end:

    (2,4),(5,6),(3,1),(1,2),(2,4)(2,4), (5,6), (3,1), (1,2), (2,4)

  2. Calculate Σ1\Sigma_1 (downward diagonals ➘):
    (2×6)+(5×1)+(3×2)+(1×4)=12+5+6+4=27(2 \times 6) + (5 \times 1) + (3 \times 2) + (1 \times 4) = 12 + 5 + 6 + 4 = 27

  3. Calculate Σ2\Sigma_2 (upward diagonals ➚):
    (4×5)+(6×3)+(1×1)+(2×2)=20+18+1+4=43(4 \times 5) + (6 \times 3) + (1 \times 1) + (2 \times 2) = 20 + 18 + 1 + 4 = 43

  4. Area:

    Area=122743=162=8 u2\text{Area} = \frac{1}{2} |27 - 43| = \frac{16}{2} = 8 \text{ u}^2