Units, Systems and Dimensional Analysis
Absolute and Technical (or Gravitational) Systems of Units
Absolute Systems
In these systems, force is a derived quantity (F = m·a).
| System | Length (L) | Mass (M) | Time (T) | Unit of Force |
|---|---|---|---|---|
| CGS | centimeter (cm) | gram (g) | second (s) | dyne (1 g·cm/s²) |
| MKS | meter (m) | kilogram (kg) | second (s) | newton (1 kg·m/s²) |
| FPS | foot (ft) | pound-mass (lbm) | second (s) | poundal (1 lbm·ft/s²) |
Technical or Gravitational Systems
In these systems, force is a fundamental quantity and mass is derived (m = F/a).
| System | Length (L) | Force (F) | Time (T) | Unit of Mass |
|---|---|---|---|---|
| Technical CGS | cm | gram-force (gf) | s | technical mass unit (TMU-CGS) |
| Technical MKS | m | kilogram-force (kgf) | s | Technical Mass Unit, TUE (9.8 kg) |
| Technical FPS | ft | pound-force (lbf) | s | slug (32.2 lbm) |
International System of Units (SI)
SI Base Quantities
| Quantity | Dimension | Unit | Symbol | Current Definition |
|---|---|---|---|---|
| Length | L | meter | m | Distance traveled by light in 1/299,792,458 s |
| Mass | M | kilogram | kg | Based on the Planck constant (2019) |
| Time | T | second | s | 9,192,631,770 periods of radiation of Cs-133 |
| Thermodynamic temperature | Θ | kelvin | K | Based on the Boltzmann constant |
| Electric current | I | ampere | A | Based on the elementary charge (1.602×10⁻¹⁹ C/s) |
| Luminous intensity | J | candela | cd | Based on luminous efficacy |
| Amount of substance | N | mole | mol | Contains 6.022×10²³ elementary entities |
SI Supplementary Quantities
| Quantity | Unit | Symbol | Definition |
|---|---|---|---|
| Plane angle | radian | rad | m/m (dimensionless) |
| Solid angle | steradian | sr | m²/m² (dimensionless) |
Classification of Physical Quantities
Fundamental vs. Derived Quantities
- Fundamental: Independent of each other, define the system
- Derived: Expressed through dimensional equations
Scalar vs. Vector Quantities
| Type | Characteristics | Examples |
|---|---|---|
| Scalars | Magnitude only (numerical value + unit) | Mass, time, temperature, energy |
| Vectors | Magnitude, direction, and sense | Displacement, velocity, force, acceleration |
Examples of Important Derived Quantities
| Quantity | Formula | Dimension | SI Unit | Name |
|---|---|---|---|---|
| Velocity | v = Δx/Δt | LT⁻¹ | m/s | — |
| Acceleration | a = Δv/Δt | LT⁻² | m/s² | — |
| Force | F = m·a | MLT⁻² | kg·m/s² | newton (N) |
| Work | W = F·d | ML²T⁻² | N·m | joule (J) |
| Power | P = W/t | ML²T⁻³ | J/s | watt (W) |
| Pressure | p = F/A | ML⁻¹T⁻² | N/m² | pascal (Pa) |
Comparison of Systems of Units
Main Comparison Table
| Quantity | Symbol | SI | CGS | Technical MKS | Technical FPS |
|---|---|---|---|---|---|
| Length | L | meter (m) | cm | m | foot (ft) |
| Mass | M | kg | g | TUE ≈ 9.8 kg | slug ≈ 14.6 kg |
| Time | T | s | s | s | s |
| Force | F | N (newton) | dyne | kgf (kilopond) | lbf |
| Equivalence | — | 1 N = 1 kg·m/s² | 1 dyne = 1 g·cm/s² | 1 kgf = 9.80665 N | 1 lbf = 4.448 N |
Key relation: 1 N = 10⁵ dynes
Essential Conversions
Length
- 1 m = 100 cm = 3.28084 ft
- 1 ft = 30.48 cm = 12 in
- 1 in = 2.54 cm
- 1 mi = 1609.34 m = 5280 ft
Mass
- 1 kg = 1000 g = 2.20462 lbm
- 1 slug = 14.5939 kg = 32.174 lbm
- 1 TUE = 9.80665 kg
Force
- 1 N = 0.101972 kgf = 0.224809 lbf
- 1 kgf = 9.80665 N = 2.20462 lbf
- 1 lbf = 4.44822 N = 0.453592 kgf
Energy
- 1 J = 10⁷ erg = 0.101972 kgf·m
- 1 cal = 4.184 J (thermochemical calorie)
- 1 eV = 1.602×10⁻¹⁹ J
- 1 kWh = 3.6×10⁶ J
Power
- 1 W = 1 J/s = 0.101972 kgf·m/s
- 1 HP (English) = 745.7 W
- 1 CV (French, metric horsepower) = 735.5 W
Dimensional Analysis
Fundamental Principle
Dimensional homogeneity: All terms in a physical equation must have the same dimensions.
Basic Dimensional Equations (Mechanics)
| Quantity | Dimension | S.I. Unit | C.G.S. Unit |
|---|---|---|---|
| (Length) | m | cm | |
| (Mass) | kg | g | |
| (Time) | s | s | |
| (Area) | |||
| (Volume) | |||
| (Linear velocity) | |||
| (Linear acceleration) | |||
| (Force) | (Newton) | (dyne) | |
| (Torque) | |||
| (Energy/Work) | (Joule) | (erg) | |
| (Power) | (Watt) | ||
| (Momentum) | |||
| (Impulse) | |||
| (Period) | s | s | |
| (Frequency) | (Hertz) | (Hertz) | |
| (Angular velocity) | |||
| (Angular acceleration) | |||
| (Moment of force) | |||
| (Angular momentum) | |||
| (Moment of inertia) |
Basic Dimensional Equations (Thermodynamics)
| Quantity | Dimension | S.I. Unit | C.G.S. Unit |
|---|---|---|---|
| Temperature | kelvin (K) | kelvin (K) | |
| Heat | joule (J) | erg | |
| Specific heat | |||
| Latent heat | |||
| Entropy | |||
| Internal energy | joule (J) | erg | |
| Enthalpy | joule (J) | erg | |
| Thermodynamic work | joule (J) | erg | |
| Thermal power | watt (W) | ||
| Pressure | pascal (Pa) | barye () | |
| Density | |||
| Specific volume | |||
| Heat capacity | |||
| Thermal conductivity | |||
| Thermal expansion coefficient | |||
| Dynamic viscosity | poise () | ||
| Kinematic viscosity | stokes () |
Basic Dimensional Equations (Electromagnetism)
| Quantity | Dimension (SI) | S.I. Unit | C.G.S. Unit (esu/emu) |
|---|---|---|---|
| Electric charge | coulomb © | statcoulomb (esu) / abcoulomb (emu) | |
| Electric current | ampere (A) | statampere (esu) / abampere (emu) | |
| Electric potential | volt (V) = | statvolt (esu) / abvolt (emu) | |
| Electric field | (esu) | ||
| Electrical resistance | ohm () | statohm (esu) / abohm (emu) | |
| Electrical conductance | siemens (S) | statsiemens (esu) / absiemens (emu) | |
| Capacitance | farad (F) | statfarad (esu) / abfarad (emu) | |
| Magnetic flux | weber (Wb) | maxwell (Mx) | |
| Magnetic flux density | tesla (T) = | gauss (G) | |
| Magnetic field strength (H) | oersted (Oe) | ||
| Inductance | henry (H) | stathenry (esu) / abhenry (emu) | |
| Electromotive force (emf) | volt (V) | statvolt (esu) / abvolt (emu) | |
| Current density | |||
| Electric permittivity | dimensionless (esu: ) | ||
| Magnetic permeability | dimensionless (emu: ) | ||
| Electric power | watt (W) | ||
| Electromagnetic energy | joule (J) | erg | |
| Radiant intensity |
Notes:
- In the SI system, electric current () is a fundamental dimension.
- In CGS there are variants: esu (electrostatic units) for electrical phenomena and emu (electromagnetic units) for magnetic phenomena. The Gaussian system combines both.
- In CGS-esu, the vacuum permittivity (dimensionless); in CGS-emu, the vacuum permeability (dimensionless).
- ; ; .
Basic Dimensional Equations (Optics)
| Quantity | Dimension | S.I. Unit | C.G.S. Unit |
|---|---|---|---|
| Wavelength | meter (m) | centimeter (cm) | |
| Frequency | hertz (Hz) = | ||
| Speed of light | |||
| Refractive index | dimensionless | — | — |
| Optical power (diopter) | diopter () | ||
| Plane angle | dimensionless | radian (rad) | radian (rad) |
| Solid angle | dimensionless | steradian (sr) | steradian (sr) |
| Luminous intensity | candela (cd) | — | |
| Luminous flux | lumen (lm) = | — | |
| Illuminance | lux (lx) = | phot (ph) = | |
| Luminance | stilb (sb) = | ||
| Radiant energy | joule (J) | erg | |
| Radiant power (flux) | watt (W) | ||
| Radiant intensity | |||
| Irradiance | |||
| Radiance | |||
| Radiant exitance | |||
| Wavenumber | (kayser) |
Notes:
- In physical optics, radiometric quantities (energy, power, irradiance) have classical mechanical dimensions.
- Photometric (luminous) quantities incorporate the luminous intensity dimension , which is fundamental in SI.
- The CGS system does not define standard photometric units; luminous units are specific to SI.
- ; .
Basic Dimensional Equations (Acoustics)
| Quantity | Dimension | S.I. Unit | C.G.S. Unit |
|---|---|---|---|
| Acoustic pressure | pascal (Pa) = | barye = | |
| Sound energy density | |||
| Sound intensity | |||
| Sound power | watt (W) | ||
| Specific acoustic impedance | |||
| Characteristic acoustic impedance | rayl () | ||
| Speed of sound | |||
| Frequency | hertz (Hz) = | ||
| Wavelength | meter (m) | centimeter (cm) | |
| Sound pressure level | dimensionless | decibel (dB) | decibel (dB) |
| Medium density | |||
| Particle displacement | meter (m) | centimeter (cm) | |
| Particle velocity | |||
| Particle acceleration | |||
| Acoustic volume flow rate | |||
| Bulk modulus | pascal (Pa) | barye |
Notes:
- The sound pressure level in decibels is dimensionless and is defined as , where is the reference pressure in air.
- ; ; .
- The characteristic acoustic impedance of a medium is , where is the density and is the speed of sound.
Applications of Dimensional Analysis
- Formula verification: Checking dimensional consistency
- Formula deduction: Rayleigh’s method
- Unit conversion: Changing between systems
- Phenomenon study: Similarity analysis and dimensionless numbers
SI Prefixes (International System)
Multiples
| Prefix | Symbol | Factor | Scale |
|---|---|---|---|
| Yotta | Y | septillion | |
| Zetta | Z | sextillion | |
| Exa | E | quintillion | |
| Peta | P | quadrillion | |
| Tera | T | trillion | |
| Giga | G | billion | |
| Mega | M | million | |
| Kilo | k | thousand | |
| hecto | h | hundred | |
| deca | da | ten |
Submultiples
| Prefix | Symbol | Factor | Scale |
|---|---|---|---|
| deci | d | tenth | |
| centi | c | hundredth | |
| milli | m | thousandth | |
| micro | μ | millionth | |
| nano | n | billionth | |
| pico | p | trillionth | |
| femto | f | quadrillionth | |
| atto | a | quintillionth | |
| zepto | z | sextillionth | |
| yocto | y | septillionth |
Note:
For areas and volumes, the prefixes apply to the base unit:
- 1 cm³ = (0.01 m)³ = 10⁻⁶ m³
- 1 km² = (1000 m)² = 10⁶ m²