equationzone

Integral Calculus

Applications of Multiple Integrals

Essential guide to multiple integrals: detailed formulas for double and triple integrals in Cartesian, polar, cylindrical, and spherical coordinates. Ideal for engineering and mathematics students.

Quantity General Formula In Cartesian Coordinates In Polar Coordinates
Area of a planar region S=RdAS = \iint_R dA Rdxdy\displaystyle \iint_R dx\,dy Rρdρdφ\displaystyle \iint_R \rho\,d\rho\,d\varphi
Surface area of z=f(x,y)z = f(x,y) S=R1+(zx)2+(zy)2dAS = \iint_R \sqrt{1 + \left( \frac{\partial z}{\partial x} \right)^2 + \left( \frac{\partial z}{\partial y} \right)^2} \,dA R1+fx2+fy2dxdy\displaystyle \iint_R \sqrt{1 + f_x^2 + f_y^2}\,dx\,dy Rρ2+ρ2fρ2+fφ2dρdφ\displaystyle \iint_R \sqrt{\rho^2 + \rho^2 f_\rho^2 + f_\varphi^2}\,d\rho\,d\varphi
Volume under a surface V=RzdAV = \iint_R z\,dA Rf(x,y)dxdy\displaystyle \iint_R f(x,y)\,dx\,dy Rz(ρ,φ)ρdρdφ\displaystyle \iint_R z(\rho,\varphi)\,\rho\,d\rho\,d\varphi
Moment of inertia about the (x)-axis Ix=Ry2dAI_x = \iint_R y^2\,dA Ry2dxdy\displaystyle \iint_R y^2\,dx\,dy Rρ3sin2φdρdφ\displaystyle \iint_R \rho^3\sin^2\varphi\,d\rho\,d\varphi
Moment of inertia about the origin (O) IO=R(x2+y2)dAI_O = \iint_R (x^2+y^2)\,dA R(x2+y2)dxdy\displaystyle \iint_R (x^2+y^2)\,dx\,dy Rρ3dρdφ\displaystyle \iint_R \rho^3\,d\rho\,d\varphi
Mass of a lamina with density δ(x,y)\delta(x,y) M=RδdAM = \iint_R \delta\,dA Rδ(x,y)dxdy\displaystyle \iint_R \delta(x,y)\,dx\,dy Rδ(ρ,φ)ρdρdφ\displaystyle \iint_R \delta(\rho,\varphi)\,\rho\,d\rho\,d\varphi
Center of mass coordinates (homogeneous lamina) {xc=1SRxdAyc=1SRydA\begin{cases} \displaystyle x_c = \frac{1}{S}\iint_R x\,dA \\[1em] \displaystyle y_c = \frac{1}{S}\iint_R y\,dA \end{cases} {RxdxdyRdxdyRydxdyRdxdy\begin{cases} \displaystyle \frac{\iint_R x\,dx\,dy}{\iint_R dx\,dy} \\[1em] \displaystyle \frac{\iint_R y\,dx\,dy}{\iint_R dx\,dy} \end{cases} {Rρ2cosφdρdφRρdρdφRρ2sinφdρdφRρdρdφ\begin{cases} \displaystyle \frac{\iint_R \rho^2\cos\varphi\,d\rho\,d\varphi}{\iint_R \rho\,d\rho\,d\varphi} \\[1em] \displaystyle \frac{\iint_R \rho^2\sin\varphi\,d\rho\,d\varphi}{\iint_R \rho\,d\rho\,d\varphi} \end{cases}
Notes
  • dAdA: differential area element.
  • For surface area, γ\gamma is the angle between the surface normal and the zz-axis.
  • In polar coordinates: x=ρcosφx = \rho\cos\varphi, y=ρsinφy = \rho\sin\varphi, dA=ρdρdφdA = \rho\,d\rho\,d\varphi.
  • For homogeneous laminas, the constant density δ\delta cancels out in center of mass formulas.

Quantity General Formula Cartesian Coordinates Cylindrical Coordinates Spherical Coordinates
Volume of a solid V=VdVV = \iiint_V dV Vdxdydz\displaystyle \iiint_V dx\,dy\,dz Vρdρdφdz\displaystyle \iiint_V \rho\,d\rho\,d\varphi\,dz Vr2sinθdrdθdφ\displaystyle \iiint_V r^2\sin\theta\,dr\,d\theta\,d\varphi
Moment of inertia about the (z)-axis Iz=V(x2+y2)dVI_z = \iiint_V (x^2+y^2)\,dV V(x2+y2)dxdydz\displaystyle \iiint_V (x^2+y^2)\,dx\,dy\,dz Vρ3dρdφdz\displaystyle \iiint_V \rho^3\,d\rho\,d\varphi\,dz Vr4sin3θdrdθdφ\displaystyle \iiint_V r^4\sin^3\theta\,dr\,d\theta\,d\varphi
Mass of a solid with density δ(x,y,z)\delta(x,y,z) M=VδdVM = \iiint_V \delta\,dV Vδ(x,y,z)dxdydz\displaystyle \iiint_V \delta(x,y,z)\,dx\,dy\,dz Vδ(ρ,φ,z)ρdρdφdz\displaystyle \iiint_V \delta(\rho,\varphi,z)\,\rho\,d\rho\,d\varphi\,dz Vδ(r,θ,φ)r2sinθdrdθdφ\displaystyle \iiint_V \delta(r,\theta,\varphi)\,r^2\sin\theta\,dr\,d\theta\,d\varphi
Center of mass coordinates (homogeneous solid) {xc=1VVxdVyc=1VVydVzc=1VVzdV\begin{cases} \displaystyle x_c = \frac{1}{V}\iiint_V x\,dV \\[1em] \displaystyle y_c = \frac{1}{V}\iiint_V y\,dV \\[1em] \displaystyle z_c = \frac{1}{V}\iiint_V z\,dV \end{cases} {VxdxdydzVdxdydzVydxdydzVdxdydzVzdxdydzVdxdydz\begin{cases} \displaystyle \frac{\iiint_V x\,dx\,dy\,dz}{\iiint_V dx\,dy\,dz} \\[1em] \displaystyle \frac{\iiint_V y\,dx\,dy\,dz}{\iiint_V dx\,dy\,dz} \\[1em] \displaystyle \frac{\iiint_V z\,dx\,dy\,dz}{\iiint_V dx\,dy\,dz} \end{cases} {Vρ2cosφdρdφdzVρdρdφdzVρ2sinφdρdφdzVρdρdφdzVzρdρdφdzVρdρdφdz\begin{cases} \displaystyle \frac{\iiint_V \rho^2\cos\varphi\,d\rho\,d\varphi\,dz}{\iiint_V \rho\,d\rho\,d\varphi\,dz} \\[1em] \displaystyle \frac{\iiint_V \rho^2\sin\varphi\,d\rho\,d\varphi\,dz}{\iiint_V \rho\,d\rho\,d\varphi\,dz} \\[1em] \displaystyle \frac{\iiint_V z\rho\,d\rho\,d\varphi\,dz}{\iiint_V \rho\,d\rho\,d\varphi\,dz} \end{cases} {Vr3sin2θcosφdrdθdφVr2sinθdrdθdφVr3sin2θsinφdrdθdφVr2sinθdrdθdφVr3sinθcosθdrdθdφVr2sinθdrdθdφ\begin{cases} \displaystyle \frac{\iiint_V r^3\sin^2\theta\cos\varphi\,dr\,d\theta\,d\varphi}{\iiint_V r^2\sin\theta\,dr\,d\theta\,d\varphi} \\[1em] \displaystyle \frac{\iiint_V r^3\sin^2\theta\sin\varphi\,dr\,d\theta\,d\varphi}{\iiint_V r^2\sin\theta\,dr\,d\theta\,d\varphi} \\[1em] \displaystyle \frac{\iiint_V r^3\sin\theta\cos\theta\,dr\,d\theta\,d\varphi}{\iiint_V r^2\sin\theta\,dr\,d\theta\,d\varphi} \end{cases}
Notes
  • Cylindrical coordinates: x=ρcosφx = \rho\cos\varphi, y=ρsinφy = \rho\sin\varphi, z=zz = z, dV=ρdρdφdzdV = \rho\,d\rho\,d\varphi\,dz.
  • Spherical coordinates: x=rsinθcosφx = r\sin\theta\cos\varphi, y=rsinθsinφy = r\sin\theta\sin\varphi, z=rcosθz = r\cos\theta, dV=r2sinθdrdθdφdV = r^2\sin\theta\,dr\,d\theta\,d\varphi.
  • For homogeneous solids, the constant density δ\delta cancels out in center of mass formulas.