Volume of a solid
V = ∭ V d V V = \iiint_V dV V = ∭ V d V
∭ V d x d y d z \displaystyle \iiint_V dx\,dy\,dz ∭ V d x d y d z
∭ V ρ d ρ d φ d z \displaystyle \iiint_V \rho\,d\rho\,d\varphi\,dz ∭ V ρ d ρ d φ d z
∭ V r 2 sin θ d r d θ d φ \displaystyle \iiint_V r^2\sin\theta\,dr\,d\theta\,d\varphi ∭ V r 2 sin θ d r d θ d φ
Moment of inertia about the (z)-axis
I z = ∭ V ( x 2 + y 2 ) d V I_z = \iiint_V (x^2+y^2)\,dV I z = ∭ V ( x 2 + y 2 ) d V
∭ V ( x 2 + y 2 ) d x d y d z \displaystyle \iiint_V (x^2+y^2)\,dx\,dy\,dz ∭ V ( x 2 + y 2 ) d x d y d z
∭ V ρ 3 d ρ d φ d z \displaystyle \iiint_V \rho^3\,d\rho\,d\varphi\,dz ∭ V ρ 3 d ρ d φ d z
∭ V r 4 sin 3 θ d r d θ d φ \displaystyle \iiint_V r^4\sin^3\theta\,dr\,d\theta\,d\varphi ∭ V r 4 sin 3 θ d r d θ d φ
Mass of a solid with density δ ( x , y , z ) \delta(x,y,z) δ ( x , y , z )
M = ∭ V δ d V M = \iiint_V \delta\,dV M = ∭ V δ d V
∭ V δ ( x , y , z ) d x d y d z \displaystyle \iiint_V \delta(x,y,z)\,dx\,dy\,dz ∭ V δ ( x , y , z ) d x d y d z
∭ V δ ( ρ , φ , z ) ρ d ρ d φ d z \displaystyle \iiint_V \delta(\rho,\varphi,z)\,\rho\,d\rho\,d\varphi\,dz ∭ V δ ( ρ , φ , z ) ρ d ρ d φ d z
∭ V δ ( r , θ , φ ) r 2 sin θ d r d θ d φ \displaystyle \iiint_V \delta(r,\theta,\varphi)\,r^2\sin\theta\,dr\,d\theta\,d\varphi ∭ V δ ( r , θ , φ ) r 2 sin θ d r d θ d φ
Center of mass coordinates (homogeneous solid)
{ x c = 1 V ∭ V x d V y c = 1 V ∭ V y d V z c = 1 V ∭ V z d V \begin{cases} \displaystyle x_c = \frac{1}{V}\iiint_V x\,dV \\[1em] \displaystyle y_c = \frac{1}{V}\iiint_V y\,dV \\[1em] \displaystyle z_c = \frac{1}{V}\iiint_V z\,dV \end{cases} ⎩ ⎨ ⎧ x c = V 1 ∭ V x d V y c = V 1 ∭ V y d V z c = V 1 ∭ V z d V
{ ∭ V x d x d y d z ∭ V d x d y d z ∭ V y d x d y d z ∭ V d x d y d z ∭ V z d x d y d z ∭ V d x d y d z \begin{cases} \displaystyle \frac{\iiint_V x\,dx\,dy\,dz}{\iiint_V dx\,dy\,dz} \\[1em] \displaystyle \frac{\iiint_V y\,dx\,dy\,dz}{\iiint_V dx\,dy\,dz} \\[1em] \displaystyle \frac{\iiint_V z\,dx\,dy\,dz}{\iiint_V dx\,dy\,dz} \end{cases} ⎩ ⎨ ⎧ ∭ V d x d y d z ∭ V x d x d y d z ∭ V d x d y d z ∭ V y d x d y d z ∭ V d x d y d z ∭ V z d x d y d z
{ ∭ V ρ 2 cos φ d ρ d φ d z ∭ V ρ d ρ d φ d z ∭ V ρ 2 sin φ d ρ d φ d z ∭ V ρ d ρ d φ d z ∭ V z ρ d ρ d φ d z ∭ V ρ d ρ d φ d z \begin{cases} \displaystyle \frac{\iiint_V \rho^2\cos\varphi\,d\rho\,d\varphi\,dz}{\iiint_V \rho\,d\rho\,d\varphi\,dz} \\[1em] \displaystyle \frac{\iiint_V \rho^2\sin\varphi\,d\rho\,d\varphi\,dz}{\iiint_V \rho\,d\rho\,d\varphi\,dz} \\[1em] \displaystyle \frac{\iiint_V z\rho\,d\rho\,d\varphi\,dz}{\iiint_V \rho\,d\rho\,d\varphi\,dz} \end{cases} ⎩ ⎨ ⎧ ∭ V ρ d ρ d φ d z ∭ V ρ 2 cos φ d ρ d φ d z ∭ V ρ d ρ d φ d z ∭ V ρ 2 sin φ d ρ d φ d z ∭ V ρ d ρ d φ d z ∭ V z ρ d ρ d φ d z
{ ∭ V r 3 sin 2 θ cos φ d r d θ d φ ∭ V r 2 sin θ d r d θ d φ ∭ V r 3 sin 2 θ sin φ d r d θ d φ ∭ V r 2 sin θ d r d θ d φ ∭ V r 3 sin θ cos θ d r d θ d φ ∭ V r 2 sin θ d r d θ d φ \begin{cases} \displaystyle \frac{\iiint_V r^3\sin^2\theta\cos\varphi\,dr\,d\theta\,d\varphi}{\iiint_V r^2\sin\theta\,dr\,d\theta\,d\varphi} \\[1em] \displaystyle \frac{\iiint_V r^3\sin^2\theta\sin\varphi\,dr\,d\theta\,d\varphi}{\iiint_V r^2\sin\theta\,dr\,d\theta\,d\varphi} \\[1em] \displaystyle \frac{\iiint_V r^3\sin\theta\cos\theta\,dr\,d\theta\,d\varphi}{\iiint_V r^2\sin\theta\,dr\,d\theta\,d\varphi} \end{cases} ⎩ ⎨ ⎧ ∭ V r 2 sin θ d r d θ d φ ∭ V r 3 sin 2 θ cos φ d r d θ d φ ∭ V r 2 sin θ d r d θ d φ ∭ V r 3 sin 2 θ sin φ d r d θ d φ ∭ V r 2 sin θ d r d θ d φ ∭ V r 3 sin θ cos θ d r d θ d φ