equationzone

Integral Calculus

Table of Integrals of Irrational Functions

Integrals of irrational functions, which involve roots like square roots (x\sqrt{x}), are challenging but solvable using specific substitution techniques to transform them into simpler rational forms or standard integral patterns, often employing algebraic, trigonometric substitutions, or Euler substitutions to rationalize the integrand, focusing on radical expressions like ax2+bx+c\sqrt{ax^{2}+bx+c} to find antiderivatives.

Integrals Containing x\sqrt{x} and a2±b2xa^2 \pm b^2 x

Notation

Let X=a2±b2xX = a^2 \pm b^2 x and define:

Y={arctan(bxa),for X=a2+b2x,12lna+bxabx,for X=a2b2x.Y = \begin{cases} \displaystyle \arctan\left( \frac{b\sqrt{x}}{a} \right), & \text{for } X = a^2 + b^2 x, \\[2ex] \displaystyle \frac{1}{2} \ln \left| \frac{a + b\sqrt{x}}{a - b\sqrt{x}} \right|, & \text{for } X = a^2 - b^2 x. \end{cases}

Note

In formulas with double signs (±\pm or \mp), the upper sign corresponds to X=a2+b2xX = a^2 + b^2 x, and the lower sign to X=a2b2xX = a^2 - b^2 x.

xdxX=±2xb22ab3Y\int \frac{\sqrt{x} \, dx}{X} = \pm \frac{2\sqrt{x}}{b^2} \mp \frac{2a}{b^3} \, Y

x3dxX=±23x3b22a2xb4+2a3b5Y\int \frac{\sqrt{x^3} \, dx}{X} = \pm \frac{2}{3} \cdot \frac{\sqrt{x^3}}{b^2} - \frac{2a^2\sqrt{x}}{b^4} + \frac{2a^3}{b^5} \, Y

xdxX2=±xb2X±1ab3Y\int \frac{\sqrt{x} \, dx}{X^2} = \pm \frac{\sqrt{x}}{b^2 X} \pm \frac{1}{a b^3} \, Y

x3dxX2=±2x3b2X+3a2xb4X3a3b5Y\int \frac{\sqrt{x^3} \, dx}{X^2} = \pm \frac{2\sqrt{x^3}}{b^2 X} + \frac{3a^2\sqrt{x}}{b^4 X} - \frac{3a^3}{b^5} \, Y

dxXx=2abY\int \frac{dx}{X \sqrt{x}} = \frac{2}{a b} \, Y

dxXx3=2a3x2ba3Y\int \frac{dx}{X \sqrt{x^3}} = -\frac{2}{a^3 \sqrt{x}} \mp \frac{2b}{a^3} \, Y

dxX2x=xa2X+ba3Y\int \frac{dx}{X^2 \sqrt{x}} = \frac{\sqrt{x}}{a^2 X} + \frac{b}{a^3} \, Y

dxX3x3=2a3Xx3b2xa4X3b3a5Y\int \frac{dx}{X^3 \sqrt{x^3}} = -\frac{2}{a^3 X \sqrt{x}} \mp \frac{3b^2 \sqrt{x}}{a^4 X} \mp \frac{3b^3}{a^5} \, Y


Other Integrals Containing x\sqrt{x}

xdxa4+x2=12a2ln(x+a2x+a2xa2x+a2)+1a2arctan(a2xa2x)\int \frac{\sqrt{x} \, dx}{a^4 + x^2} = -\frac{1}{2a\sqrt{2}} \ln \left( \frac{x + a\sqrt{2x} + a^2}{x - a\sqrt{2x} + a^2} \right) + \frac{1}{a\sqrt{2}} \arctan \left( \frac{a\sqrt{2x}}{a^2 - x} \right)

dx(a4+x2)x=12a32ln(x+a2x+a2xa2x+a2)+1a32arctan(a2xa2x)\int \frac{dx}{(a^4 + x^2) \sqrt{x}} = \frac{1}{2a^3\sqrt{2}} \ln \left( \frac{x + a\sqrt{2x} + a^2}{x - a\sqrt{2x} + a^2} \right) + \frac{1}{a^3\sqrt{2}} \arctan \left( \frac{a\sqrt{2x}}{a^2 - x} \right)

xdxa4x2=12alna+xax1aarctan(xa)\int \frac{\sqrt{x} \, dx}{a^4 - x^2} = \frac{1}{2a} \ln \left| \frac{a + \sqrt{x}}{a - \sqrt{x}} \right| - \frac{1}{a} \arctan \left( \frac{\sqrt{x}}{a} \right)

dx(a4x2)x=12a3lna+xax+1a3arctan(xa)\int \frac{dx}{(a^4 - x^2) \sqrt{x}} = \frac{1}{2a^3} \ln \left| \frac{a + \sqrt{x}}{a - \sqrt{x}} \right| + \frac{1}{a^3} \arctan \left( \frac{\sqrt{x}}{a} \right)


Integrals Containing ax+b\sqrt{ax + b}

Notation:

X=ax+bX = ax + b

Xdx=23aX3/2\int \sqrt{X} \, dx = \frac{2}{3a} \, X^{3/2}

xXdx=2(3ax2b)15a2X3/2\int x \sqrt{X} \, dx = \frac{2(3ax - 2b)}{15a^2} \, X^{3/2}

x2Xdx=2(15a2x212abx+8b2)105a3X3/2\int x^2 \sqrt{X} \, dx = \frac{2(15a^2 x^2 - 12abx + 8b^2)}{105a^3} \, X^{3/2}

dxX=2aX\int \frac{dx}{\sqrt{X}} = \frac{2}{a} \sqrt{X}

xdxX=2(ax2b)3a2X\int \frac{x \, dx}{\sqrt{X}} = \frac{2(ax - 2b)}{3a^2} \sqrt{X}

x2dxX=2(3a2x24abx+8b2)15a3X\int \frac{x^2 \, dx}{\sqrt{X}} = \frac{2(3a^2 x^2 - 4abx + 8b^2)}{15a^3} \sqrt{X}

dxxX={1blnXbX+b,b>0,2barctanXb,b<0.\int \frac{dx}{x \sqrt{X}} = \begin{cases} \displaystyle \frac{1}{\sqrt{b}} \ln \left| \frac{\sqrt{X} - \sqrt{b}}{\sqrt{X} + \sqrt{b}} \right|, & b > 0, \\[2ex] \displaystyle \frac{2}{\sqrt{-b}} \arctan \sqrt{\frac{X}{-b}}, & b < 0. \end{cases}

Xxdx=2X+bdxxX(see 127)\int \frac{\sqrt{X}}{x} \, dx = 2 \sqrt{X} + b \int \frac{dx}{x \sqrt{X}} \qquad \text{(see 127)}

dxx2X=Xbxa2bdxxX(see 127)\int \frac{dx}{x^2 \sqrt{X}} = -\frac{\sqrt{X}}{bx} - \frac{a}{2b} \int \frac{dx}{x \sqrt{X}} \qquad \text{(see 127)}

Xx2dx=Xx+a2dxxX(see 127)\int \frac{\sqrt{X}}{x^2} \, dx = -\frac{\sqrt{X}}{x} + \frac{a}{2} \int \frac{dx}{x \sqrt{X}} \qquad \text{(see 127)}

dxxnX=X(n1)bxn1(2n3)a(2n2)bdxxn1X,n>1\int \frac{dx}{x^n \sqrt{X}} = -\frac{\sqrt{X}}{(n-1) b x^{n-1}} - \frac{(2n-3)a}{(2n-2)b} \int \frac{dx}{x^{n-1} \sqrt{X}}, \qquad n>1

X3/2dx=25aX5/2\int X^{3/2} \, dx = \frac{2}{5a} \, X^{5/2}

xX3/2dx=235a2(5ax2b)X5/2\int x X^{3/2} \, dx = \frac{2}{35a^2} (5a x - 2b) \, X^{5/2}

x2X3/2dx=2315a3(35a2x220abx+8b2)X5/2\int x^2 X^{3/2} \, dx = \frac{2}{315a^3} \bigl( 35a^2 x^2 - 20ab x + 8b^2 \bigr) \, X^{5/2}

X3/2xdx=23X3/2+2bX+b2dxxX(see 127)\int \frac{X^{3/2}}{x} \, dx = \frac{2}{3} X^{3/2} + 2b \sqrt{X} + b^2 \int \frac{dx}{x \sqrt{X}} \qquad \text{(see 127)}

xdxX3/2=2a2(X+bX)\int \frac{x \, dx}{X^{3/2}} = \frac{2}{a^2} \left( \sqrt{X} + \frac{b}{\sqrt{X}} \right)

x2dxX3/2=2a3(X3/232bXb2X)\int \frac{x^2 \, dx}{X^{3/2}} = \frac{2}{a^3} \left( \frac{X^{3/2}}{3} - 2b \sqrt{X} - \frac{b^2}{\sqrt{X}} \right)

dxxX3/2=2bX+1bdxxX(see 127)\int \frac{dx}{x X^{3/2}} = \frac{2}{b\sqrt{X}} + \frac{1}{b} \int \frac{dx}{x \sqrt{X}} \qquad \text{(see 127)}

dxx2X3/2=1bxX3a2b(2bX+1bdxxX)\int \frac{dx}{x^2 X^{3/2}} = -\frac{1}{b x \sqrt{X}} - \frac{3a}{2b} \left( \frac{2}{b\sqrt{X}} + \frac{1}{b} \int \frac{dx}{x \sqrt{X}} \right)

Xn/2dx=2a(n+2)X(n+2)/2,n2\int X^{n/2} \, dx = \frac{2}{a(n+2)} \, X^{(n+2)/2}, \qquad n \neq -2

xXn/2dx=2a2(X(n+4)/2n+4bX(n+2)/2n+2),n2,4\int x X^{n/2} \, dx = \frac{2}{a^2} \left( \frac{X^{(n+4)/2}}{n+4} - \frac{b X^{(n+2)/2}}{n+2} \right), \qquad n \neq -2, -4

x2Xn/2dx=2a3(X(n+6)/2n+62bX(n+4)/2n+4+b2X(n+2)/2n+2),n2,4,6\int x^2 X^{n/2} \, dx = \frac{2}{a^3} \left( \frac{X^{(n+6)/2}}{n+6} - \frac{2b X^{(n+4)/2}}{n+4} + \frac{b^2 X^{(n+2)/2}}{n+2} \right), \qquad n \neq -2, -4, -6

Xn/2xdx=2nXn/2+bX(n2)/2xdx,n0\int \frac{X^{n/2}}{x} \, dx = \frac{2}{n} X^{n/2} + b \int \frac{X^{(n-2)/2}}{x} \, dx, \qquad n \neq 0

dxxXn/2=2(2n)bX(n2)/2+1bdxxX(n2)/2,n2\int \frac{dx}{x X^{n/2}} = \frac{2}{(2-n)b X^{(n-2)/2}} + \frac{1}{b} \int \frac{dx}{x X^{(n-2)/2}}, \qquad n \neq 2

dxx2Xn/2=1bxX(n2)/2na2bdxxXn/2\int \frac{dx}{x^2 X^{n/2}} = -\frac{1}{b x X^{(n-2)/2}} - \frac{na}{2b} \int \frac{dx}{x X^{n/2}}

Note:

In the recursive formulas (131, 138, 139, 143-145), the reduction must be applied successively until reaching a known integral (such as 127).


Integrals Containing ax+b\sqrt{ax + b} and fx+g\sqrt{fx + g}

Notation:

X=ax+b,Y=fx+g,Δ=bfag.X = ax + b, \qquad Y = fx + g, \qquad \Delta = bf - ag.

dxXY={2afarctanfXaY,if af<0,1aflnaY+fX,if af>0.\int \frac{dx}{\sqrt{XY}} = \begin{cases} \displaystyle \frac{2}{\sqrt{-af}} \, \arctan \sqrt{\frac{-fX}{aY}}, & \text{if } af < 0, \\[2ex] \displaystyle \frac{1}{\sqrt{af}} \, \ln \left| \sqrt{aY} + \sqrt{fX} \right|, & \text{if } af > 0. \end{cases}

xdxXY=XYafag+bf2afdxXY(see 146)\int \frac{x \, dx}{\sqrt{XY}} = \frac{\sqrt{XY}}{af} - \frac{ag + bf}{2af} \int \frac{dx}{\sqrt{XY}} \qquad \text{(see 146)}

dxXY3/2=2XΔY\int \frac{dx}{\sqrt{X} \, Y^{3/2}} = -\frac{2\sqrt{X}}{\Delta \sqrt{Y}}

dxYX={2ΔfarctanfXΔ,if Δf<0,1ΔflnfXΔffX+Δf,if Δf>0.\int \frac{dx}{Y \sqrt{X}} = \begin{cases} \displaystyle \frac{2}{\sqrt{-\Delta f}} \, \arctan \sqrt{ \frac{fX}{-\Delta} }, & \text{if } \Delta f < 0, \\[2ex] \displaystyle \frac{1}{\sqrt{\Delta f}} \, \ln \left| \frac{\sqrt{fX} - \sqrt{\Delta f}}{\sqrt{fX} + \sqrt{\Delta f}} \right|, & \text{if } \Delta f > 0. \end{cases}

XYdx=Δ+2aY4afXYΔ28afdxXY(see 146)\int \sqrt{XY} \, dx = \frac{\Delta + 2aY}{4af} \sqrt{XY} - \frac{\Delta^2}{8af} \int \frac{dx}{\sqrt{XY}} \qquad \text{(see 146)}

YXdx=1aXYΔ2adxXY(see 146)\int \sqrt{\frac{Y}{X}} \, dx = \frac{1}{a} \sqrt{XY} - \frac{\Delta}{2a} \int \frac{dx}{\sqrt{XY}} \qquad \text{(see 146)}

XYdx=2Xf+ΔfdxYX(see 149)\int \frac{\sqrt{X}}{Y} \, dx = \frac{2\sqrt{X}}{f} + \frac{\Delta}{f} \int \frac{dx}{Y\sqrt{X}} \qquad \text{(see 149)}

YndxX=2(2n+1)a(XYnnΔYn1dxX)\int \frac{Y^n \, dx}{\sqrt{X}} = \frac{2}{(2n+1)a} \left( \sqrt{X} \, Y^n - n\Delta \int \frac{Y^{n-1} \, dx}{\sqrt{X}} \right)

dxXYn=1(n1)Δ(XYn1+(2n3)a2dxXYn1)\int \frac{dx}{\sqrt{X} \, Y^n} = -\frac{1}{(n-1)\Delta} \left( \frac{\sqrt{X}}{Y^{n-1}} + \frac{(2n-3)a}{2} \int \frac{dx}{\sqrt{X} \, Y^{n-1}} \right)

XYndx=2(2n+3)f(XYn+1Δ2YndxX)(see 153)\int \sqrt{X} \, Y^n \, dx = \frac{2}{(2n+3)f} \left( \sqrt{X} \, Y^{n+1} - \frac{\Delta}{2} \int \frac{Y^n \, dx}{\sqrt{X}} \right) \qquad \text{(see 153)}

XdxYn=1(n1)f(XYn1+a2dxXYn1)\int \frac{\sqrt{X} \, dx}{Y^n} = -\frac{1}{(n-1)f} \left( \frac{\sqrt{X}}{Y^{n-1}} + \frac{a}{2} \int \frac{dx}{\sqrt{X} \, Y^{n-1}} \right)

Note:

In the recursive formulas (147, 150-156), the reduction must be applied successively until reaching a known integral (such as 146 or 149).


Integrals Containing a2x2\sqrt{a^2 - x^2}

Notation:

X=a2x2X = a^2 - x^2

Xdx=12(xX+a2arcsinxa)\int \sqrt{X} \, dx = \frac{1}{2} \left( x\sqrt{X} + a^2 \arcsin\frac{x}{a} \right)

xXdx=13X3/2\int x\sqrt{X} \, dx = -\frac{1}{3} X^{3/2}

x2Xdx=x4X3/2+a28(xX+a2arcsinxa)\int x^2 \sqrt{X} \, dx = -\frac{x}{4} X^{3/2} + \frac{a^2}{8} \left( x\sqrt{X} + a^2 \arcsin\frac{x}{a} \right)

x3Xdx=(X5/25a2X3/23)\int x^3 \sqrt{X} \, dx = \left( \frac{X^{5/2}}{5} - \frac{a^2 X^{3/2}}{3} \right)

Xxdx=Xalna+Xx\int \frac{\sqrt{X}}{x} \, dx = \sqrt{X} - a \ln\left| \frac{a + \sqrt{X}}{x} \right|

Xx2dx=Xxarcsinxa\int \frac{\sqrt{X}}{x^2} \, dx = -\frac{\sqrt{X}}{x} - \arcsin\frac{x}{a}

Xx3dx=X2x2+12alna+Xx\int \frac{\sqrt{X}}{x^3} \, dx = -\frac{\sqrt{X}}{2x^2} + \frac{1}{2a} \ln\left| \frac{a + \sqrt{X}}{x} \right|

dxX=arcsinxa\int \frac{dx}{\sqrt{X}} = \arcsin\frac{x}{a}

xdxX=X\int \frac{x\,dx}{\sqrt{X}} = -\sqrt{X}

x2dxX=x2X+a22arcsinxa\int \frac{x^2\,dx}{\sqrt{X}} = -\frac{x}{2}\sqrt{X} + \frac{a^2}{2} \arcsin\frac{x}{a}

x3dxX=X3/23a2X\int \frac{x^3\,dx}{\sqrt{X}} = \frac{X^{3/2}}{3} - a^2 \sqrt{X}

dxxX=1alna+Xx\int \frac{dx}{x\sqrt{X}} = -\frac{1}{a} \ln\left| \frac{a + \sqrt{X}}{x} \right|

dxx2X=Xa2x\int \frac{dx}{x^2\sqrt{X}} = -\frac{\sqrt{X}}{a^2 x}

dxx3X=X2a2x212a3lna+Xx\int \frac{dx}{x^3\sqrt{X}} = -\frac{\sqrt{X}}{2a^2 x^2} - \frac{1}{2a^3} \ln\left| \frac{a + \sqrt{X}}{x} \right|

X3/2dx=14(xX3/2+3a2x2X+3a42arcsinxa)\int X^{3/2} \, dx = \frac{1}{4} \left( x X^{3/2} + \frac{3a^2 x}{2} \sqrt{X} + \frac{3a^4}{2} \arcsin\frac{x}{a} \right)

xX3/2dx=15X5/2\int x X^{3/2} \, dx = -\frac{1}{5} X^{5/2}

x2X3/2dx=x6X5/2+a224(xX3/2+3a2x2X+3a42arcsinxa)\int x^2 X^{3/2} \, dx = -\frac{x}{6} X^{5/2} + \frac{a^2}{24} \left( x X^{3/2} + \frac{3a^2 x}{2} \sqrt{X} + \frac{3a^4}{2} \arcsin\frac{x}{a} \right)

x3X3/2dx=X7/27a2X5/25\int x^3 X^{3/2} \, dx = \frac{X^{7/2}}{7} - \frac{a^2 X^{5/2}}{5}

X3/2xdx=X3/23+a2Xa3lna+Xx\int \frac{X^{3/2}}{x} \, dx = \frac{X^{3/2}}{3} + a^2 \sqrt{X} - a^3 \ln\left| \frac{a + \sqrt{X}}{x} \right|

X3/2x2dx=X3/2x32xX3a22arcsinxa\int \frac{X^{3/2}}{x^2} \, dx = -\frac{X^{3/2}}{x} - \frac{3}{2} x \sqrt{X} - \frac{3a^2}{2} \arcsin\frac{x}{a}

X3/2x3dx=X3/22x23X2+3a2lna+Xx\int \frac{X^{3/2}}{x^3} \, dx = -\frac{X^{3/2}}{2x^2} - \frac{3\sqrt{X}}{2} + \frac{3a}{2} \ln\left| \frac{a + \sqrt{X}}{x} \right|

dxX3/2=xa2X\int \frac{dx}{X^{3/2}} = \frac{x}{a^2 \sqrt{X}}

xdxX3/2=1X\int \frac{x\,dx}{X^{3/2}} = \frac{1}{\sqrt{X}}

x2dxX3/2=xXarcsinxa\int \frac{x^2\,dx}{X^{3/2}} = \frac{x}{\sqrt{X}} - \arcsin\frac{x}{a}

x3dxX3/2=X+a2X\int \frac{x^3\,dx}{X^{3/2}} = \sqrt{X} + \frac{a^2}{\sqrt{X}}

dxxX3/2=1a2X1a3lna+Xx\int \frac{dx}{x X^{3/2}} = \frac{1}{a^2 \sqrt{X}} - \frac{1}{a^3} \ln\left| \frac{a + \sqrt{X}}{x} \right|

dxx2X3/2=Xa4x+xa4X\int \frac{dx}{x^2 X^{3/2}} = -\frac{\sqrt{X}}{a^4 x} + \frac{x}{a^4 \sqrt{X}}

dxx3X3/2=12a2x2X+32a4X32a5lna+Xx\int \frac{dx}{x^3 X^{3/2}} = -\frac{1}{2a^2 x^2 \sqrt{X}} + \frac{3}{2a^4 \sqrt{X}} - \frac{3}{2a^5} \ln\left| \frac{a + \sqrt{X}}{x} \right|

Note:

All integrals assume a>0a > 0 and x<a|x| < a so that a2x2\sqrt{a^2 - x^2} is real.


Integrals Containing x2+a2\sqrt{x^2 + a^2}

Notation:

X=x2+a2X = x^2 + a^2

Xdx=12(xX+a2ln(x+X))+C\int \sqrt{X} \, dx = \frac{1}{2} \left( x\sqrt{X} + a^2 \ln\bigl(x + \sqrt{X}\bigr) \right) + C

xXdx=13X3/2\int x\sqrt{X} \, dx = \frac{1}{3} X^{3/2}

x2Xdx=x4X3/2a28(xX+a2ln(x+X))+C\int x^2 \sqrt{X} \, dx = \frac{x}{4} X^{3/2} - \frac{a^2}{8} \left( x\sqrt{X} + a^2 \ln\bigl(x + \sqrt{X}\bigr) \right) + C

x3Xdx=X5/25a2X3/23\int x^3 \sqrt{X} \, dx = \frac{X^{5/2}}{5} - \frac{a^2 X^{3/2}}{3}

Xxdx=Xalna+Xx\int \frac{\sqrt{X}}{x} \, dx = \sqrt{X} - a \ln\left| \frac{a + \sqrt{X}}{x} \right|

Xx2dx=Xx+ln(x+X)+C\int \frac{\sqrt{X}}{x^2} \, dx = -\frac{\sqrt{X}}{x} + \ln\bigl(x + \sqrt{X}\bigr) + C

Xx3dx=X2x212alna+Xx\int \frac{\sqrt{X}}{x^3} \, dx = -\frac{\sqrt{X}}{2x^2} - \frac{1}{2a} \ln\left| \frac{a + \sqrt{X}}{x} \right|

dxX=ln(x+X)+C\int \frac{dx}{\sqrt{X}} = \ln\bigl(x + \sqrt{X}\bigr) + C

xdxX=X\int \frac{x\,dx}{\sqrt{X}} = \sqrt{X}

x2dxX=x2Xa22ln(x+X)+C\int \frac{x^2\,dx}{\sqrt{X}} = \frac{x}{2} \sqrt{X} - \frac{a^2}{2} \ln\bigl(x + \sqrt{X}\bigr) + C

x3dxX=X3/23a2X\int \frac{x^3\,dx}{\sqrt{X}} = \frac{X^{3/2}}{3} - a^2 \sqrt{X}

dxxX=1alna+Xx\int \frac{dx}{x\sqrt{X}} = -\frac{1}{a} \ln\left| \frac{a + \sqrt{X}}{x} \right|

dxx2X=Xa2x\int \frac{dx}{x^2\sqrt{X}} = -\frac{\sqrt{X}}{a^2 x}

dxx3X=X2a2x2+12a3lna+Xx\int \frac{dx}{x^3\sqrt{X}} = -\frac{\sqrt{X}}{2a^2 x^2} + \frac{1}{2a^3} \ln\left| \frac{a + \sqrt{X}}{x} \right|

X3/2dx=14(xX3/2+3a2x2X+3a42ln(x+X))+C\int X^{3/2} \, dx = \frac{1}{4} \left( x X^{3/2} + \frac{3a^2 x}{2} \sqrt{X} + \frac{3a^4}{2} \ln\bigl(x + \sqrt{X}\bigr) \right) + C

xX3/2dx=15X5/2\int x X^{3/2} \, dx = \frac{1}{5} X^{5/2}

x2X3/2dx=x6X5/2a224(xX3/2+3a2x2X+3a42ln(x+X))+C\int x^2 X^{3/2} \, dx = \frac{x}{6} X^{5/2} - \frac{a^2}{24} \left( x X^{3/2} + \frac{3a^2 x}{2} \sqrt{X} + \frac{3a^4}{2} \ln\bigl(x + \sqrt{X}\bigr) \right) + C

x3X3/2dx=X7/27a2X5/25\int x^3 X^{3/2} \, dx = \frac{X^{7/2}}{7} - \frac{a^2 X^{5/2}}{5}

X3/2xdx=X3/23+a2Xa3lna+Xx\int \frac{X^{3/2}}{x} \, dx = \frac{X^{3/2}}{3} + a^2 \sqrt{X} - a^3 \ln\left| \frac{a + \sqrt{X}}{x} \right|

X3/2x2dx=X3/2x+32xX+3a22ln(x+X)+C\int \frac{X^{3/2}}{x^2} \, dx = -\frac{X^{3/2}}{x} + \frac{3}{2} x \sqrt{X} + \frac{3a^2}{2} \ln\bigl(x + \sqrt{X}\bigr) + C

X3/2x3dx=X3/22x2+32X3a2lna+Xx\int \frac{X^{3/2}}{x^3} \, dx = -\frac{X^{3/2}}{2x^2} + \frac{3}{2} \sqrt{X} - \frac{3a}{2} \ln\left| \frac{a + \sqrt{X}}{x} \right|

dxX3/2=xa2X\int \frac{dx}{X^{3/2}} = \frac{x}{a^2 \sqrt{X}}

xdxX3/2=1X\int \frac{x\,dx}{X^{3/2}} = -\frac{1}{\sqrt{X}}

x2dxX3/2=xX+ln(x+X)+C\int \frac{x^2\,dx}{X^{3/2}} = -\frac{x}{\sqrt{X}} + \ln\bigl(x + \sqrt{X}\bigr) + C

x3dxX3/2=X+a2X\int \frac{x^3\,dx}{X^{3/2}} = \sqrt{X} + \frac{a^2}{\sqrt{X}}

dxxX3/2=1a2X1a3lna+Xx\int \frac{dx}{x X^{3/2}} = \frac{1}{a^2 \sqrt{X}} - \frac{1}{a^3} \ln\left| \frac{a + \sqrt{X}}{x} \right|

dxx2X3/2=Xa4xxa4X\int \frac{dx}{x^2 X^{3/2}} = -\frac{\sqrt{X}}{a^4 x} - \frac{x}{a^4 \sqrt{X}}

dxx3X3/2=12a2x2X32a4X+32a6lna+Xx\int \frac{dx}{x^3 X^{3/2}} = -\frac{1}{2a^2 x^2 \sqrt{X}} - \frac{3}{2a^4 \sqrt{X}} + \frac{3}{2a^6} \ln\left| \frac{a + \sqrt{X}}{x} \right|

Note:

All integrals assume a>0a > 0. The notation Arsh(x/a)\operatorname{Arsh}(x/a) is equivalent to ln(x+x2+a2)\ln(x + \sqrt{x^2+a^2}).


Integrals Containing x2a2\sqrt{x^2 - a^2}

Notation:

X=x2a2(x>a>0)X = x^2 - a^2 \quad (x > a > 0)

Xdx=12(xXa2lnx+X)+C\int \sqrt{X} \, dx = \frac{1}{2} \left( x\sqrt{X} - a^2 \ln\bigl|x + \sqrt{X}\bigr| \right) + C

xXdx=13X3/2\int x\sqrt{X} \, dx = \frac{1}{3} X^{3/2}

x2Xdx=x4X3/2+a28(xXa2lnx+X)+C\int x^2 \sqrt{X} \, dx = \frac{x}{4} X^{3/2} + \frac{a^2}{8} \left( x\sqrt{X} - a^2 \ln\bigl|x + \sqrt{X}\bigr| \right) + C

x3Xdx=X5/25+a2X3/23\int x^3 \sqrt{X} \, dx = \frac{X^{5/2}}{5} + \frac{a^2 X^{3/2}}{3}

Xxdx=Xaarccosax\int \frac{\sqrt{X}}{x} \, dx = \sqrt{X} - a \arccos\frac{a}{|x|}

Xx2dx=Xx+lnx+X+C\int \frac{\sqrt{X}}{x^2} \, dx = -\frac{\sqrt{X}}{x} + \ln\bigl|x + \sqrt{X}\bigr| + C

Xx3dx=X2x2+12aarccosax\int \frac{\sqrt{X}}{x^3} \, dx = -\frac{\sqrt{X}}{2x^2} + \frac{1}{2a} \arccos\frac{a}{|x|}

dxX=lnx+X+C\int \frac{dx}{\sqrt{X}} = \ln\bigl|x + \sqrt{X}\bigr| + C

xdxX=X\int \frac{x\,dx}{\sqrt{X}} = \sqrt{X}

x2dxX=x2X+a22lnx+X+C\int \frac{x^2\,dx}{\sqrt{X}} = \frac{x}{2} \sqrt{X} + \frac{a^2}{2} \ln\bigl|x + \sqrt{X}\bigr| + C

x3dxX=X3/23+a2X\int \frac{x^3\,dx}{\sqrt{X}} = \frac{X^{3/2}}{3} + a^2 \sqrt{X}

dxxX=1aarccosax\int \frac{dx}{x\sqrt{X}} = \frac{1}{a} \arccos\frac{a}{|x|}

dxx2X=Xa2x\int \frac{dx}{x^2\sqrt{X}} = \frac{\sqrt{X}}{a^2 x}

dxx3X=X2a2x2+12a3arccosax\int \frac{dx}{x^3\sqrt{X}} = \frac{\sqrt{X}}{2a^2 x^2} + \frac{1}{2a^3} \arccos\frac{a}{|x|}

X3/2dx=14(xX3/2+3a2x2X3a42lnx+X)+C\int X^{3/2} \, dx = \frac{1}{4} \left( x X^{3/2} + \frac{3a^2 x}{2} \sqrt{X} - \frac{3a^4}{2} \ln\bigl|x + \sqrt{X}\bigr| \right) + C

xX3/2dx=15X5/2\int x X^{3/2} \, dx = \frac{1}{5} X^{5/2}

x2X3/2dx=x6X5/2+a224(xX3/2+3a2x2X3a42lnx+X)+C\int x^2 X^{3/2} \, dx = \frac{x}{6} X^{5/2} + \frac{a^2}{24} \left( x X^{3/2} + \frac{3a^2 x}{2} \sqrt{X} - \frac{3a^4}{2} \ln\bigl|x + \sqrt{X}\bigr| \right) + C

x3X3/2dx=X7/27+a2X5/25\int x^3 X^{3/2} \, dx = \frac{X^{7/2}}{7} + \frac{a^2 X^{5/2}}{5}

X3/2xdx=X3/23a2X+a3arccosax\int \frac{X^{3/2}}{x} \, dx = \frac{X^{3/2}}{3} - a^2 \sqrt{X} + a^3 \arccos\frac{a}{|x|}

X3/2x2dx=X3/2x+32xX+3a22lnx+X+C\int \frac{X^{3/2}}{x^2} \, dx = -\frac{X^{3/2}}{x} + \frac{3}{2} x \sqrt{X} + \frac{3a^2}{2} \ln\bigl|x + \sqrt{X}\bigr| + C

X3/2x3dx=X3/22x232X3a2arccosax\int \frac{X^{3/2}}{x^3} \, dx = -\frac{X^{3/2}}{2x^2} - \frac{3}{2} \sqrt{X} - \frac{3a}{2} \arccos\frac{a}{|x|}

dxX3/2=xa2X\int \frac{dx}{X^{3/2}} = -\frac{x}{a^2 \sqrt{X}}

xdxX3/2=1X\int \frac{x\,dx}{X^{3/2}} = -\frac{1}{\sqrt{X}}

x2dxX3/2=xXlnx+X+C\int \frac{x^2\,dx}{X^{3/2}} = -\frac{x}{\sqrt{X}} - \ln\bigl|x + \sqrt{X}\bigr| + C

x3dxX3/2=Xa2X\int \frac{x^3\,dx}{X^{3/2}} = \sqrt{X} - \frac{a^2}{\sqrt{X}}

dxxX3/2=1a2X1a3arccosax\int \frac{dx}{x X^{3/2}} = -\frac{1}{a^2 \sqrt{X}} - \frac{1}{a^3} \arccos\frac{a}{|x|}

dxx2X3/2=Xa4x+xa4X\int \frac{dx}{x^2 X^{3/2}} = -\frac{\sqrt{X}}{a^4 x} + \frac{x}{a^4 \sqrt{X}}

dxx3X3/2=12a2x2X+32a4X32a6arccosax\int \frac{dx}{x^3 X^{3/2}} = -\frac{1}{2a^2 x^2 \sqrt{X}} + \frac{3}{2a^4 \sqrt{X}} - \frac{3}{2a^6} \arccos\frac{a}{|x|}

Note:

All integrals assume x>a>0x > a > 0. For x<ax < -a, one can use the substitution x=ux = -u and apply these formulas with absolute values. The function arccos(a/x)\arccos(a/x) can also be expressed as \arcsec(x/a)\arcsec(x/a).


Integrals Containing ax2+bx+c\sqrt{ax^2 + bx + c}

Notation:

X=ax2+bx+c,Δ=4acb2,k=4aΔ.X = ax^2 + bx + c, \qquad \Delta = 4ac - b^2, \qquad k = \frac{4a}{\Delta}.

dxX={1aln2aX+2ax+b+C,a>0,1aarcsin2ax+bΔ+C,a<0, Δ<0.\int \frac{dx}{\sqrt{X}} = \begin{cases} \displaystyle \frac{1}{\sqrt{a}} \ln\left| 2\sqrt{aX} + 2ax + b \right| + C, & a > 0, \\[2ex] \displaystyle \frac{1}{\sqrt{-a}} \arcsin\frac{2ax+b}{\sqrt{-\Delta}} + C, & a < 0,\ \Delta < 0. \end{cases}

dxxX=1cln2cX+2c+bxx(c>0)\int \frac{dx}{x\sqrt{X}} = -\frac{1}{\sqrt{c}} \ln\left| \frac{2\sqrt{cX} + 2c + bx}{x} \right| \quad (c > 0)

dxX3/2=2(2ax+b)ΔX\int \frac{dx}{X^{3/2}} = \frac{2(2ax+b)}{\Delta\sqrt{X}}

dxX(2n+1)/2=2(2ax+b)(2n1)ΔX(2n1)/2+2k(n1)2n1dxX(2n1)/2\int \frac{dx}{X^{(2n+1)/2}} = \frac{2(2ax+b)}{(2n-1)\Delta X^{(2n-1)/2}} + \frac{2k(n-1)}{2n-1} \int \frac{dx}{X^{(2n-1)/2}}

Xdx=(2ax+b)X4a+Δ8adxX(see 241)\int \sqrt{X} \, dx = \frac{(2ax+b)\sqrt{X}}{4a} + \frac{\Delta}{8a} \int \frac{dx}{\sqrt{X}} \qquad \text{(see 241)}

X3/2dx=(2ax+b)XX8a+3Δ16aXdx(see 245)\int X^{3/2} \, dx = \frac{(2ax+b)X\sqrt{X}}{8a} + \frac{3\Delta}{16a} \int \sqrt{X} \, dx \qquad \text{(see 245)}

X5/2dx=(2ax+b)X2X12a+5Δ24aX3/2dx(see 246)\int X^{5/2} \, dx = \frac{(2ax+b)X^2\sqrt{X}}{12a} + \frac{5\Delta}{24a} \int X^{3/2} \, dx \qquad \text{(see 246)}

X(2n+1)/2dx=(2ax+b)X(2n1)/2X4an+(2n1)Δ8anX(2n3)/2dx\int X^{(2n+1)/2} \, dx = \frac{(2ax+b)X^{(2n-1)/2}\sqrt{X}}{4an} + \frac{(2n-1)\Delta}{8an} \int X^{(2n-3)/2} \, dx

xdxX=Xab2adxX(see 241)\int \frac{x\,dx}{\sqrt{X}} = \frac{\sqrt{X}}{a} - \frac{b}{2a} \int \frac{dx}{\sqrt{X}} \qquad \text{(see 241)}

xdxX3/2=2(bx+2c)ΔX\int \frac{x\,dx}{X^{3/2}} = -\frac{2(bx+2c)}{\Delta\sqrt{X}}

xdxX(2n+1)/2=1(2n1)aX(2n1)/2b2adxX(2n+1)/2(see 244)\int \frac{x\,dx}{X^{(2n+1)/2}} = -\frac{1}{(2n-1)a X^{(2n-1)/2}} - \frac{b}{2a} \int \frac{dx}{X^{(2n+1)/2}} \qquad \text{(see 244)}

x2dxX=(x2a3b4a2)X+3b24ac8a2dxX(see 241)\int \frac{x^2\,dx}{\sqrt{X}} = \left( \frac{x}{2a} - \frac{3b}{4a^2} \right) \sqrt{X} + \frac{3b^2 - 4ac}{8a^2} \int \frac{dx}{\sqrt{X}} \qquad \text{(see 241)}

x2dxX3/2=(2b24ac)x+2bcaΔX+1adxX(see 241)\int \frac{x^2\,dx}{X^{3/2}} = \frac{(2b^2-4ac)x + 2bc}{a\Delta\sqrt{X}} + \frac{1}{a} \int \frac{dx}{\sqrt{X}} \qquad \text{(see 241)}

xXdx=X3/23ab2aXdx(see 245)\int x\sqrt{X} \, dx = \frac{X^{3/2}}{3a} - \frac{b}{2a} \int \sqrt{X} \, dx \qquad \text{(see 245)}

xX3/2dx=X5/25ab2aX3/2dx(see 246)\int x X^{3/2} \, dx = \frac{X^{5/2}}{5a} - \frac{b}{2a} \int X^{3/2} \, dx \qquad \text{(see 246)}

xX(2n+1)/2dx=X(2n+3)/2(2n+3)ab2aX(2n+1)/2dx(see 248)\int x X^{(2n+1)/2} \, dx = \frac{X^{(2n+3)/2}}{(2n+3)a} - \frac{b}{2a} \int X^{(2n+1)/2} \, dx \qquad \text{(see 248)}

x2Xdx=xX3/24a5b12aX3/2a+5b24ac8a2Xdx(see 245)\int x^2 \sqrt{X} \, dx = \frac{x X^{3/2}}{4a} - \frac{5b}{12a} \cdot \frac{X^{3/2}}{a} + \frac{5b^2 - 4ac}{8a^2} \int \sqrt{X} \, dx \qquad \text{(see 245)}

dxxX={1cln2cX+2c+bxx,c>0,1carcsinbx+2cxΔ,c<0.\int \frac{dx}{x\sqrt{X}} = \begin{cases} \displaystyle -\frac{1}{\sqrt{c}} \ln\left| \frac{2\sqrt{cX} + 2c + bx}{x} \right|, & c > 0, \\[2ex] \displaystyle \frac{1}{\sqrt{-c}} \arcsin\frac{bx+2c}{|x|\sqrt{-\Delta}}, & c < 0. \end{cases}

dxx2X=Xcxb2cdxxX(see 258)\int \frac{dx}{x^2\sqrt{X}} = -\frac{\sqrt{X}}{cx} - \frac{b}{2c} \int \frac{dx}{x\sqrt{X}} \qquad \text{(see 258)}

Xxdx=X+b2dxX+cdxxX(see 241, 258)\int \frac{\sqrt{X}}{x} \, dx = \sqrt{X} + \frac{b}{2} \int \frac{dx}{\sqrt{X}} + c \int \frac{dx}{x\sqrt{X}} \qquad \text{(see 241, 258)}

Xx2dx=Xx+adxX+b2dxxX(see 241, 258)\int \frac{\sqrt{X}}{x^2} \, dx = -\frac{\sqrt{X}}{x} + a \int \frac{dx}{\sqrt{X}} + \frac{b}{2} \int \frac{dx}{x\sqrt{X}} \qquad \text{(see 241, 258)}

X(2n+1)/2xdx=X(2n+1)/22n+1+b2X(2n1)/2dx+cX(2n1)/2xdx\int \frac{X^{(2n+1)/2}}{x} \, dx = \frac{X^{(2n+1)/2}}{2n+1} + \frac{b}{2} \int X^{(2n-1)/2} \, dx + c \int \frac{X^{(2n-1)/2}}{x} \, dx

dxxax4+bx=2bxax4+bx\int \frac{dx}{x\sqrt{ax^4 + bx}} = -\frac{2}{bx} \sqrt{ax^4 + bx}

dx2axx2=arcsinxaa\int \frac{dx}{\sqrt{2ax - x^2}} = \arcsin\frac{x-a}{a}

xdx2axx2=2axx2+aarcsinxaa\int \frac{x\,dx}{\sqrt{2ax - x^2}} = -\sqrt{2ax - x^2} + a \arcsin\frac{x-a}{a}

2axx2dx=xa22axx2+a22arcsinxaa\int \sqrt{2ax - x^2} \, dx = \frac{x-a}{2} \sqrt{2ax - x^2} + \frac{a^2}{2} \arcsin\frac{x-a}{a}

dx(ax3+b)fx3+g={1bagbfarctanagbffx3+gbfx3+ggax3+b,ag>bf,12bbfaglnbfx3+g+gax3+bbfx3+ggax3+b,ag<bf.\int \frac{dx}{(ax^3 + b)\sqrt{fx^3 + g}} = \begin{cases} \displaystyle \frac{1}{\sqrt{b}\sqrt{ag-bf}} \arctan\frac{\sqrt{ag-bf}\sqrt{fx^3+g}}{\sqrt{b}\sqrt{fx^3+g} - \sqrt{g}\sqrt{ax^3+b}}, & ag>bf, \\[2ex] \displaystyle \frac{1}{2\sqrt{b}\sqrt{bf-ag}} \ln\left| \frac{\sqrt{b}\sqrt{fx^3+g} + \sqrt{g}\sqrt{ax^3+b}}{\sqrt{b}\sqrt{fx^3+g} - \sqrt{g}\sqrt{ax^3+b}} \right|, & ag<bf. \end{cases}

Note:

The formulas assume the radicals are defined in the integration domain. In recursive formulas, the reduction must be applied successively until reaching a known integral.


Integrals Containing Other Irrational Expressions

ax+bndx=n(n+1)a(ax+b)n+1n+C\int \sqrt[n]{ax + b} \, dx = \frac{n}{(n+1)a} (ax + b)^{\frac{n+1}{n}} + C

dxax+bn=n(n1)a(ax+b)n1n+C(n1)\int \frac{dx}{\sqrt[n]{ax + b}} = \frac{n}{(n-1)a} (ax + b)^{\frac{n-1}{n}} + C \quad (n \neq 1)

dxxxn+an=2nalna+xn+anxn/2+C\int \frac{dx}{x \sqrt{x^n + a^n}} = -\frac{2}{na} \ln\left| \frac{a + \sqrt{x^n + a^n}}{x^{n/2}} \right| + C

dxxxnan=2naarccos(axn/2)+C(x>a>0)\int \frac{dx}{x \sqrt{x^n - a^n}} = \frac{2}{na} \arccos\left( \frac{a}{x^{n/2}} \right) + C \quad (x > a > 0)

xdxanxn=23arcsin(xn/2an/2)+C\int \frac{\sqrt{x} \, dx}{\sqrt{a^n - x^n}} = \frac{2}{3} \arcsin\left( \frac{x^{n/2}}{a^{n/2}} \right) + C


Reduction Formulas for the Binomial Differential Integral

For the binomial integral xm(axn+b)pdx\displaystyle \int x^m (ax^n + b)^p \, dx:

xm(axn+b)pdx=1m+np+1[xm+1(axn+b)p+npbxm(axn+b)p1dx]\int x^m (ax^n + b)^p \, dx = \frac{1}{m+np+1} \left[ x^{m+1} (ax^n + b)^p + npb \int x^m (ax^n + b)^{p-1} \, dx \right]

=1bn(p+1)[xm+1(axn+b)p+1+(m+n+np+1)xm(axn+b)p+1dx]= \frac{1}{bn(p+1)} \left[ -x^{m+1} (ax^n + b)^{p+1} + (m+n+np+1) \int x^m (ax^n + b)^{p+1} \, dx \right]

=1(m+1)b[xm+1(axn+b)p+1a(m+n+np+1)xm+n(axn+b)pdx]= \frac{1}{(m+1)b} \left[ x^{m+1} (ax^n + b)^{p+1} - a(m+n+np+1) \int x^{m+n} (ax^n + b)^p \, dx \right]

=1a(m+np+1)[xmn+1(axn+b)p+1(mn+1)bxmn(axn+b)pdx]= \frac{1}{a(m+np+1)} \left[ x^{m-n+1} (ax^n + b)^{p+1} - (m-n+1)b \int x^{m-n} (ax^n + b)^p \, dx \right]

Note:

The reduction formulas are useful for lowering the exponent pp or the degree mm of the binomial integral. They are applied successively until an elementary integral is obtained.