Integrals of irrational functions, which involve roots like square roots (x \sqrt{x} x ), are challenging but solvable using specific substitution techniques to transform them into simpler rational forms or standard integral patterns, often employing algebraic, trigonometric substitutions, or Euler substitutions to rationalize the integrand, focusing on radical expressions like a x 2 + b x + c \sqrt{ax^{2}+bx+c} a x 2 + b x + c to find antiderivatives.
Let X = a 2 ± b 2 x X = a^2 \pm b^2 x X = a 2 ± b 2 x and define:
Y = { arctan ( b x a ) , for X = a 2 + b 2 x , 1 2 ln ∣ a + b x a − b x ∣ , for X = a 2 − b 2 x . Y =
\begin{cases}
\displaystyle \arctan\left( \frac{b\sqrt{x}}{a} \right), & \text{for } X = a^2 + b^2 x, \\[2ex]
\displaystyle \frac{1}{2} \ln \left| \frac{a + b\sqrt{x}}{a - b\sqrt{x}} \right|, & \text{for } X = a^2 - b^2 x.
\end{cases}
Y = ⎩ ⎨ ⎧ arctan ( a b x ) , 2 1 ln a − b x a + b x , for X = a 2 + b 2 x , for X = a 2 − b 2 x .
In formulas with double signs (± \pm ± or ∓ \mp ∓ ), the upper sign corresponds to X = a 2 + b 2 x X = a^2 + b^2 x X = a 2 + b 2 x , and the lower sign to X = a 2 − b 2 x X = a^2 - b^2 x X = a 2 − b 2 x .
∫ x d x X = ± 2 x b 2 ∓ 2 a b 3 Y \int \frac{\sqrt{x} \, dx}{X} = \pm \frac{2\sqrt{x}}{b^2} \mp \frac{2a}{b^3} \, Y
∫ X x d x = ± b 2 2 x ∓ b 3 2 a Y
∫ x 3 d x X = ± 2 3 ⋅ x 3 b 2 − 2 a 2 x b 4 + 2 a 3 b 5 Y \int \frac{\sqrt{x^3} \, dx}{X} = \pm \frac{2}{3} \cdot \frac{\sqrt{x^3}}{b^2} - \frac{2a^2\sqrt{x}}{b^4} + \frac{2a^3}{b^5} \, Y
∫ X x 3 d x = ± 3 2 ⋅ b 2 x 3 − b 4 2 a 2 x + b 5 2 a 3 Y
∫ x d x X 2 = ± x b 2 X ± 1 a b 3 Y \int \frac{\sqrt{x} \, dx}{X^2} = \pm \frac{\sqrt{x}}{b^2 X} \pm \frac{1}{a b^3} \, Y
∫ X 2 x d x = ± b 2 X x ± a b 3 1 Y
∫ x 3 d x X 2 = ± 2 x 3 b 2 X + 3 a 2 x b 4 X − 3 a 3 b 5 Y \int \frac{\sqrt{x^3} \, dx}{X^2} = \pm \frac{2\sqrt{x^3}}{b^2 X} + \frac{3a^2\sqrt{x}}{b^4 X} - \frac{3a^3}{b^5} \, Y
∫ X 2 x 3 d x = ± b 2 X 2 x 3 + b 4 X 3 a 2 x − b 5 3 a 3 Y
∫ d x X x = 2 a b Y \int \frac{dx}{X \sqrt{x}} = \frac{2}{a b} \, Y
∫ X x d x = ab 2 Y
∫ d x X x 3 = − 2 a 3 x ∓ 2 b a 3 Y \int \frac{dx}{X \sqrt{x^3}} = -\frac{2}{a^3 \sqrt{x}} \mp \frac{2b}{a^3} \, Y
∫ X x 3 d x = − a 3 x 2 ∓ a 3 2 b Y
∫ d x X 2 x = x a 2 X + b a 3 Y \int \frac{dx}{X^2 \sqrt{x}} = \frac{\sqrt{x}}{a^2 X} + \frac{b}{a^3} \, Y
∫ X 2 x d x = a 2 X x + a 3 b Y
∫ d x X 3 x 3 = − 2 a 3 X x ∓ 3 b 2 x a 4 X ∓ 3 b 3 a 5 Y \int \frac{dx}{X^3 \sqrt{x^3}} = -\frac{2}{a^3 X \sqrt{x}} \mp \frac{3b^2 \sqrt{x}}{a^4 X} \mp \frac{3b^3}{a^5} \, Y
∫ X 3 x 3 d x = − a 3 X x 2 ∓ a 4 X 3 b 2 x ∓ a 5 3 b 3 Y
∫ x d x a 4 + x 2 = − 1 2 a 2 ln ( x + a 2 x + a 2 x − a 2 x + a 2 ) + 1 a 2 arctan ( a 2 x a 2 − x ) \int \frac{\sqrt{x} \, dx}{a^4 + x^2} =
-\frac{1}{2a\sqrt{2}} \ln \left( \frac{x + a\sqrt{2x} + a^2}{x - a\sqrt{2x} + a^2} \right)
+ \frac{1}{a\sqrt{2}} \arctan \left( \frac{a\sqrt{2x}}{a^2 - x} \right)
∫ a 4 + x 2 x d x = − 2 a 2 1 ln ( x − a 2 x + a 2 x + a 2 x + a 2 ) + a 2 1 arctan ( a 2 − x a 2 x )
∫ d x ( a 4 + x 2 ) x = 1 2 a 3 2 ln ( x + a 2 x + a 2 x − a 2 x + a 2 ) + 1 a 3 2 arctan ( a 2 x a 2 − x ) \int \frac{dx}{(a^4 + x^2) \sqrt{x}} =
\frac{1}{2a^3\sqrt{2}} \ln \left( \frac{x + a\sqrt{2x} + a^2}{x - a\sqrt{2x} + a^2} \right)
+ \frac{1}{a^3\sqrt{2}} \arctan \left( \frac{a\sqrt{2x}}{a^2 - x} \right)
∫ ( a 4 + x 2 ) x d x = 2 a 3 2 1 ln ( x − a 2 x + a 2 x + a 2 x + a 2 ) + a 3 2 1 arctan ( a 2 − x a 2 x )
∫ x d x a 4 − x 2 = 1 2 a ln ∣ a + x a − x ∣ − 1 a arctan ( x a ) \int \frac{\sqrt{x} \, dx}{a^4 - x^2} =
\frac{1}{2a} \ln \left| \frac{a + \sqrt{x}}{a - \sqrt{x}} \right|
- \frac{1}{a} \arctan \left( \frac{\sqrt{x}}{a} \right)
∫ a 4 − x 2 x d x = 2 a 1 ln a − x a + x − a 1 arctan ( a x )
∫ d x ( a 4 − x 2 ) x = 1 2 a 3 ln ∣ a + x a − x ∣ + 1 a 3 arctan ( x a ) \int \frac{dx}{(a^4 - x^2) \sqrt{x}} =
\frac{1}{2a^3} \ln \left| \frac{a + \sqrt{x}}{a - \sqrt{x}} \right|
+ \frac{1}{a^3} \arctan \left( \frac{\sqrt{x}}{a} \right)
∫ ( a 4 − x 2 ) x d x = 2 a 3 1 ln a − x a + x + a 3 1 arctan ( a x )
∫ X d x = 2 3 a X 3 / 2 \int \sqrt{X} \, dx = \frac{2}{3a} \, X^{3/2}
∫ X d x = 3 a 2 X 3/2
∫ x X d x = 2 ( 3 a x − 2 b ) 15 a 2 X 3 / 2 \int x \sqrt{X} \, dx = \frac{2(3ax - 2b)}{15a^2} \, X^{3/2}
∫ x X d x = 15 a 2 2 ( 3 a x − 2 b ) X 3/2
∫ x 2 X d x = 2 ( 15 a 2 x 2 − 12 a b x + 8 b 2 ) 105 a 3 X 3 / 2 \int x^2 \sqrt{X} \, dx = \frac{2(15a^2 x^2 - 12abx + 8b^2)}{105a^3} \, X^{3/2}
∫ x 2 X d x = 105 a 3 2 ( 15 a 2 x 2 − 12 ab x + 8 b 2 ) X 3/2
∫ d x X = 2 a X \int \frac{dx}{\sqrt{X}} = \frac{2}{a} \sqrt{X}
∫ X d x = a 2 X
∫ x d x X = 2 ( a x − 2 b ) 3 a 2 X \int \frac{x \, dx}{\sqrt{X}} = \frac{2(ax - 2b)}{3a^2} \sqrt{X}
∫ X x d x = 3 a 2 2 ( a x − 2 b ) X
∫ x 2 d x X = 2 ( 3 a 2 x 2 − 4 a b x + 8 b 2 ) 15 a 3 X \int \frac{x^2 \, dx}{\sqrt{X}} = \frac{2(3a^2 x^2 - 4abx + 8b^2)}{15a^3} \sqrt{X}
∫ X x 2 d x = 15 a 3 2 ( 3 a 2 x 2 − 4 ab x + 8 b 2 ) X
∫ d x x X = { 1 b ln ∣ X − b X + b ∣ , b > 0 , 2 − b arctan X − b , b < 0. \int \frac{dx}{x \sqrt{X}} =
\begin{cases}
\displaystyle \frac{1}{\sqrt{b}} \ln \left| \frac{\sqrt{X} - \sqrt{b}}{\sqrt{X} + \sqrt{b}} \right|, & b > 0, \\[2ex]
\displaystyle \frac{2}{\sqrt{-b}} \arctan \sqrt{\frac{X}{-b}}, & b < 0.
\end{cases}
∫ x X d x = ⎩ ⎨ ⎧ b 1 ln X + b X − b , − b 2 arctan − b X , b > 0 , b < 0.
∫ X x d x = 2 X + b ∫ d x x X (see 127) \int \frac{\sqrt{X}}{x} \, dx = 2 \sqrt{X} + b \int \frac{dx}{x \sqrt{X}} \qquad \text{(see 127)}
∫ x X d x = 2 X + b ∫ x X d x (see 127)
∫ d x x 2 X = − X b x − a 2 b ∫ d x x X (see 127) \int \frac{dx}{x^2 \sqrt{X}} = -\frac{\sqrt{X}}{bx} - \frac{a}{2b} \int \frac{dx}{x \sqrt{X}} \qquad \text{(see 127)}
∫ x 2 X d x = − b x X − 2 b a ∫ x X d x (see 127)
∫ X x 2 d x = − X x + a 2 ∫ d x x X (see 127) \int \frac{\sqrt{X}}{x^2} \, dx = -\frac{\sqrt{X}}{x} + \frac{a}{2} \int \frac{dx}{x \sqrt{X}} \qquad \text{(see 127)}
∫ x 2 X d x = − x X + 2 a ∫ x X d x (see 127)
∫ d x x n X = − X ( n − 1 ) b x n − 1 − ( 2 n − 3 ) a ( 2 n − 2 ) b ∫ d x x n − 1 X , n > 1 \int \frac{dx}{x^n \sqrt{X}} = -\frac{\sqrt{X}}{(n-1) b x^{n-1}} - \frac{(2n-3)a}{(2n-2)b} \int \frac{dx}{x^{n-1} \sqrt{X}}, \qquad n>1
∫ x n X d x = − ( n − 1 ) b x n − 1 X − ( 2 n − 2 ) b ( 2 n − 3 ) a ∫ x n − 1 X d x , n > 1
∫ X 3 / 2 d x = 2 5 a X 5 / 2 \int X^{3/2} \, dx = \frac{2}{5a} \, X^{5/2}
∫ X 3/2 d x = 5 a 2 X 5/2
∫ x X 3 / 2 d x = 2 35 a 2 ( 5 a x − 2 b ) X 5 / 2 \int x X^{3/2} \, dx = \frac{2}{35a^2} (5a x - 2b) \, X^{5/2}
∫ x X 3/2 d x = 35 a 2 2 ( 5 a x − 2 b ) X 5/2
∫ x 2 X 3 / 2 d x = 2 315 a 3 ( 35 a 2 x 2 − 20 a b x + 8 b 2 ) X 5 / 2 \int x^2 X^{3/2} \, dx = \frac{2}{315a^3} \bigl( 35a^2 x^2 - 20ab x + 8b^2 \bigr) \, X^{5/2}
∫ x 2 X 3/2 d x = 315 a 3 2 ( 35 a 2 x 2 − 20 ab x + 8 b 2 ) X 5/2
∫ X 3 / 2 x d x = 2 3 X 3 / 2 + 2 b X + b 2 ∫ d x x X (see 127) \int \frac{X^{3/2}}{x} \, dx = \frac{2}{3} X^{3/2} + 2b \sqrt{X} + b^2 \int \frac{dx}{x \sqrt{X}} \qquad \text{(see 127)}
∫ x X 3/2 d x = 3 2 X 3/2 + 2 b X + b 2 ∫ x X d x (see 127)
∫ x d x X 3 / 2 = 2 a 2 ( X + b X ) \int \frac{x \, dx}{X^{3/2}} = \frac{2}{a^2} \left( \sqrt{X} + \frac{b}{\sqrt{X}} \right)
∫ X 3/2 x d x = a 2 2 ( X + X b )
∫ x 2 d x X 3 / 2 = 2 a 3 ( X 3 / 2 3 − 2 b X − b 2 X ) \int \frac{x^2 \, dx}{X^{3/2}} = \frac{2}{a^3} \left( \frac{X^{3/2}}{3} - 2b \sqrt{X} - \frac{b^2}{\sqrt{X}} \right)
∫ X 3/2 x 2 d x = a 3 2 ( 3 X 3/2 − 2 b X − X b 2 )
∫ d x x X 3 / 2 = 2 b X + 1 b ∫ d x x X (see 127) \int \frac{dx}{x X^{3/2}} = \frac{2}{b\sqrt{X}} + \frac{1}{b} \int \frac{dx}{x \sqrt{X}} \qquad \text{(see 127)}
∫ x X 3/2 d x = b X 2 + b 1 ∫ x X d x (see 127)
∫ d x x 2 X 3 / 2 = − 1 b x X − 3 a 2 b ( 2 b X + 1 b ∫ d x x X ) \int \frac{dx}{x^2 X^{3/2}} = -\frac{1}{b x \sqrt{X}} - \frac{3a}{2b} \left( \frac{2}{b\sqrt{X}} + \frac{1}{b} \int \frac{dx}{x \sqrt{X}} \right)
∫ x 2 X 3/2 d x = − b x X 1 − 2 b 3 a ( b X 2 + b 1 ∫ x X d x )
∫ X n / 2 d x = 2 a ( n + 2 ) X ( n + 2 ) / 2 , n ≠ − 2 \int X^{n/2} \, dx = \frac{2}{a(n+2)} \, X^{(n+2)/2}, \qquad n \neq -2
∫ X n /2 d x = a ( n + 2 ) 2 X ( n + 2 ) /2 , n = − 2
∫ x X n / 2 d x = 2 a 2 ( X ( n + 4 ) / 2 n + 4 − b X ( n + 2 ) / 2 n + 2 ) , n ≠ − 2 , − 4 \int x X^{n/2} \, dx = \frac{2}{a^2} \left( \frac{X^{(n+4)/2}}{n+4} - \frac{b X^{(n+2)/2}}{n+2} \right), \qquad n \neq -2, -4
∫ x X n /2 d x = a 2 2 ( n + 4 X ( n + 4 ) /2 − n + 2 b X ( n + 2 ) /2 ) , n = − 2 , − 4
∫ x 2 X n / 2 d x = 2 a 3 ( X ( n + 6 ) / 2 n + 6 − 2 b X ( n + 4 ) / 2 n + 4 + b 2 X ( n + 2 ) / 2 n + 2 ) , n ≠ − 2 , − 4 , − 6 \int x^2 X^{n/2} \, dx = \frac{2}{a^3} \left( \frac{X^{(n+6)/2}}{n+6} - \frac{2b X^{(n+4)/2}}{n+4} + \frac{b^2 X^{(n+2)/2}}{n+2} \right), \qquad n \neq -2, -4, -6
∫ x 2 X n /2 d x = a 3 2 ( n + 6 X ( n + 6 ) /2 − n + 4 2 b X ( n + 4 ) /2 + n + 2 b 2 X ( n + 2 ) /2 ) , n = − 2 , − 4 , − 6
∫ X n / 2 x d x = 2 n X n / 2 + b ∫ X ( n − 2 ) / 2 x d x , n ≠ 0 \int \frac{X^{n/2}}{x} \, dx = \frac{2}{n} X^{n/2} + b \int \frac{X^{(n-2)/2}}{x} \, dx, \qquad n \neq 0
∫ x X n /2 d x = n 2 X n /2 + b ∫ x X ( n − 2 ) /2 d x , n = 0
∫ d x x X n / 2 = 2 ( 2 − n ) b X ( n − 2 ) / 2 + 1 b ∫ d x x X ( n − 2 ) / 2 , n ≠ 2 \int \frac{dx}{x X^{n/2}} = \frac{2}{(2-n)b X^{(n-2)/2}} + \frac{1}{b} \int \frac{dx}{x X^{(n-2)/2}}, \qquad n \neq 2
∫ x X n /2 d x = ( 2 − n ) b X ( n − 2 ) /2 2 + b 1 ∫ x X ( n − 2 ) /2 d x , n = 2
∫ d x x 2 X n / 2 = − 1 b x X ( n − 2 ) / 2 − n a 2 b ∫ d x x X n / 2 \int \frac{dx}{x^2 X^{n/2}} = -\frac{1}{b x X^{(n-2)/2}} - \frac{na}{2b} \int \frac{dx}{x X^{n/2}}
∫ x 2 X n /2 d x = − b x X ( n − 2 ) /2 1 − 2 b na ∫ x X n /2 d x
In the recursive formulas (131, 138, 139, 143-145), the reduction must be applied successively until reaching a known integral (such as 127).
X = a x + b , Y = f x + g , Δ = b f − a g . X = ax + b, \qquad Y = fx + g, \qquad \Delta = bf - ag.
X = a x + b , Y = f x + g , Δ = b f − a g .
∫ d x X Y = { 2 − a f arctan − f X a Y , if a f < 0 , 1 a f ln ∣ a Y + f X ∣ , if a f > 0. \int \frac{dx}{\sqrt{XY}} =
\begin{cases}
\displaystyle \frac{2}{\sqrt{-af}} \, \arctan \sqrt{\frac{-fX}{aY}}, & \text{if } af < 0, \\[2ex]
\displaystyle \frac{1}{\sqrt{af}} \, \ln \left| \sqrt{aY} + \sqrt{fX} \right|, & \text{if } af > 0.
\end{cases}
∫ X Y d x = ⎩ ⎨ ⎧ − a f 2 arctan aY − f X , a f 1 ln aY + f X , if a f < 0 , if a f > 0.
∫ x d x X Y = X Y a f − a g + b f 2 a f ∫ d x X Y (see 146) \int \frac{x \, dx}{\sqrt{XY}} = \frac{\sqrt{XY}}{af} - \frac{ag + bf}{2af} \int \frac{dx}{\sqrt{XY}} \qquad \text{(see 146)}
∫ X Y x d x = a f X Y − 2 a f a g + b f ∫ X Y d x (see 146)
∫ d x X Y 3 / 2 = − 2 X Δ Y \int \frac{dx}{\sqrt{X} \, Y^{3/2}} = -\frac{2\sqrt{X}}{\Delta \sqrt{Y}}
∫ X Y 3/2 d x = − Δ Y 2 X
∫ d x Y X = { 2 − Δ f arctan f X − Δ , if Δ f < 0 , 1 Δ f ln ∣ f X − Δ f f X + Δ f ∣ , if Δ f > 0. \int \frac{dx}{Y \sqrt{X}} =
\begin{cases}
\displaystyle \frac{2}{\sqrt{-\Delta f}} \, \arctan \sqrt{ \frac{fX}{-\Delta} }, & \text{if } \Delta f < 0, \\[2ex]
\displaystyle \frac{1}{\sqrt{\Delta f}} \, \ln \left| \frac{\sqrt{fX} - \sqrt{\Delta f}}{\sqrt{fX} + \sqrt{\Delta f}} \right|, & \text{if } \Delta f > 0.
\end{cases}
∫ Y X d x = ⎩ ⎨ ⎧ − Δ f 2 arctan − Δ f X , Δ f 1 ln f X + Δ f f X − Δ f , if Δ f < 0 , if Δ f > 0.
∫ X Y d x = Δ + 2 a Y 4 a f X Y − Δ 2 8 a f ∫ d x X Y (see 146) \int \sqrt{XY} \, dx = \frac{\Delta + 2aY}{4af} \sqrt{XY} - \frac{\Delta^2}{8af} \int \frac{dx}{\sqrt{XY}} \qquad \text{(see 146)}
∫ X Y d x = 4 a f Δ + 2 aY X Y − 8 a f Δ 2 ∫ X Y d x (see 146)
∫ Y X d x = 1 a X Y − Δ 2 a ∫ d x X Y (see 146) \int \sqrt{\frac{Y}{X}} \, dx = \frac{1}{a} \sqrt{XY} - \frac{\Delta}{2a} \int \frac{dx}{\sqrt{XY}} \qquad \text{(see 146)}
∫ X Y d x = a 1 X Y − 2 a Δ ∫ X Y d x (see 146)
∫ X Y d x = 2 X f + Δ f ∫ d x Y X (see 149) \int \frac{\sqrt{X}}{Y} \, dx = \frac{2\sqrt{X}}{f} + \frac{\Delta}{f} \int \frac{dx}{Y\sqrt{X}} \qquad \text{(see 149)}
∫ Y X d x = f 2 X + f Δ ∫ Y X d x (see 149)
∫ Y n d x X = 2 ( 2 n + 1 ) a ( X Y n − n Δ ∫ Y n − 1 d x X ) \int \frac{Y^n \, dx}{\sqrt{X}} = \frac{2}{(2n+1)a} \left( \sqrt{X} \, Y^n - n\Delta \int \frac{Y^{n-1} \, dx}{\sqrt{X}} \right)
∫ X Y n d x = ( 2 n + 1 ) a 2 ( X Y n − n Δ ∫ X Y n − 1 d x )
∫ d x X Y n = − 1 ( n − 1 ) Δ ( X Y n − 1 + ( 2 n − 3 ) a 2 ∫ d x X Y n − 1 ) \int \frac{dx}{\sqrt{X} \, Y^n} = -\frac{1}{(n-1)\Delta} \left( \frac{\sqrt{X}}{Y^{n-1}} + \frac{(2n-3)a}{2} \int \frac{dx}{\sqrt{X} \, Y^{n-1}} \right)
∫ X Y n d x = − ( n − 1 ) Δ 1 ( Y n − 1 X + 2 ( 2 n − 3 ) a ∫ X Y n − 1 d x )
∫ X Y n d x = 2 ( 2 n + 3 ) f ( X Y n + 1 − Δ 2 ∫ Y n d x X ) (see 153) \int \sqrt{X} \, Y^n \, dx = \frac{2}{(2n+3)f} \left( \sqrt{X} \, Y^{n+1} - \frac{\Delta}{2} \int \frac{Y^n \, dx}{\sqrt{X}} \right) \qquad \text{(see 153)}
∫ X Y n d x = ( 2 n + 3 ) f 2 ( X Y n + 1 − 2 Δ ∫ X Y n d x ) (see 153)
∫ X d x Y n = − 1 ( n − 1 ) f ( X Y n − 1 + a 2 ∫ d x X Y n − 1 ) \int \frac{\sqrt{X} \, dx}{Y^n} = -\frac{1}{(n-1)f} \left( \frac{\sqrt{X}}{Y^{n-1}} + \frac{a}{2} \int \frac{dx}{\sqrt{X} \, Y^{n-1}} \right)
∫ Y n X d x = − ( n − 1 ) f 1 ( Y n − 1 X + 2 a ∫ X Y n − 1 d x )
In the recursive formulas (147, 150-156), the reduction must be applied successively until reaching a known integral (such as 146 or 149).
X = a 2 − x 2 X = a^2 - x^2
X = a 2 − x 2
∫ X d x = 1 2 ( x X + a 2 arcsin x a ) \int \sqrt{X} \, dx = \frac{1}{2} \left( x\sqrt{X} + a^2 \arcsin\frac{x}{a} \right)
∫ X d x = 2 1 ( x X + a 2 arcsin a x )
∫ x X d x = − 1 3 X 3 / 2 \int x\sqrt{X} \, dx = -\frac{1}{3} X^{3/2}
∫ x X d x = − 3 1 X 3/2
∫ x 2 X d x = − x 4 X 3 / 2 + a 2 8 ( x X + a 2 arcsin x a ) \int x^2 \sqrt{X} \, dx = -\frac{x}{4} X^{3/2} + \frac{a^2}{8} \left( x\sqrt{X} + a^2 \arcsin\frac{x}{a} \right)
∫ x 2 X d x = − 4 x X 3/2 + 8 a 2 ( x X + a 2 arcsin a x )
∫ x 3 X d x = ( X 5 / 2 5 − a 2 X 3 / 2 3 ) \int x^3 \sqrt{X} \, dx = \left( \frac{X^{5/2}}{5} - \frac{a^2 X^{3/2}}{3} \right)
∫ x 3 X d x = ( 5 X 5/2 − 3 a 2 X 3/2 )
∫ X x d x = X − a ln ∣ a + X x ∣ \int \frac{\sqrt{X}}{x} \, dx = \sqrt{X} - a \ln\left| \frac{a + \sqrt{X}}{x} \right|
∫ x X d x = X − a ln x a + X
∫ X x 2 d x = − X x − arcsin x a \int \frac{\sqrt{X}}{x^2} \, dx = -\frac{\sqrt{X}}{x} - \arcsin\frac{x}{a}
∫ x 2 X d x = − x X − arcsin a x
∫ X x 3 d x = − X 2 x 2 + 1 2 a ln ∣ a + X x ∣ \int \frac{\sqrt{X}}{x^3} \, dx = -\frac{\sqrt{X}}{2x^2} + \frac{1}{2a} \ln\left| \frac{a + \sqrt{X}}{x} \right|
∫ x 3 X d x = − 2 x 2 X + 2 a 1 ln x a + X
∫ d x X = arcsin x a \int \frac{dx}{\sqrt{X}} = \arcsin\frac{x}{a}
∫ X d x = arcsin a x
∫ x d x X = − X \int \frac{x\,dx}{\sqrt{X}} = -\sqrt{X}
∫ X x d x = − X
∫ x 2 d x X = − x 2 X + a 2 2 arcsin x a \int \frac{x^2\,dx}{\sqrt{X}} = -\frac{x}{2}\sqrt{X} + \frac{a^2}{2} \arcsin\frac{x}{a}
∫ X x 2 d x = − 2 x X + 2 a 2 arcsin a x
∫ x 3 d x X = X 3 / 2 3 − a 2 X \int \frac{x^3\,dx}{\sqrt{X}} = \frac{X^{3/2}}{3} - a^2 \sqrt{X}
∫ X x 3 d x = 3 X 3/2 − a 2 X
∫ d x x X = − 1 a ln ∣ a + X x ∣ \int \frac{dx}{x\sqrt{X}} = -\frac{1}{a} \ln\left| \frac{a + \sqrt{X}}{x} \right|
∫ x X d x = − a 1 ln x a + X
∫ d x x 2 X = − X a 2 x \int \frac{dx}{x^2\sqrt{X}} = -\frac{\sqrt{X}}{a^2 x}
∫ x 2 X d x = − a 2 x X
∫ d x x 3 X = − X 2 a 2 x 2 − 1 2 a 3 ln ∣ a + X x ∣ \int \frac{dx}{x^3\sqrt{X}} = -\frac{\sqrt{X}}{2a^2 x^2} - \frac{1}{2a^3} \ln\left| \frac{a + \sqrt{X}}{x} \right|
∫ x 3 X d x = − 2 a 2 x 2 X − 2 a 3 1 ln x a + X
∫ X 3 / 2 d x = 1 4 ( x X 3 / 2 + 3 a 2 x 2 X + 3 a 4 2 arcsin x a ) \int X^{3/2} \, dx = \frac{1}{4} \left( x X^{3/2} + \frac{3a^2 x}{2} \sqrt{X} + \frac{3a^4}{2} \arcsin\frac{x}{a} \right)
∫ X 3/2 d x = 4 1 ( x X 3/2 + 2 3 a 2 x X + 2 3 a 4 arcsin a x )
∫ x X 3 / 2 d x = − 1 5 X 5 / 2 \int x X^{3/2} \, dx = -\frac{1}{5} X^{5/2}
∫ x X 3/2 d x = − 5 1 X 5/2
∫ x 2 X 3 / 2 d x = − x 6 X 5 / 2 + a 2 24 ( x X 3 / 2 + 3 a 2 x 2 X + 3 a 4 2 arcsin x a ) \int x^2 X^{3/2} \, dx = -\frac{x}{6} X^{5/2} + \frac{a^2}{24} \left( x X^{3/2} + \frac{3a^2 x}{2} \sqrt{X} + \frac{3a^4}{2} \arcsin\frac{x}{a} \right)
∫ x 2 X 3/2 d x = − 6 x X 5/2 + 24 a 2 ( x X 3/2 + 2 3 a 2 x X + 2 3 a 4 arcsin a x )
∫ x 3 X 3 / 2 d x = X 7 / 2 7 − a 2 X 5 / 2 5 \int x^3 X^{3/2} \, dx = \frac{X^{7/2}}{7} - \frac{a^2 X^{5/2}}{5}
∫ x 3 X 3/2 d x = 7 X 7/2 − 5 a 2 X 5/2
∫ X 3 / 2 x d x = X 3 / 2 3 + a 2 X − a 3 ln ∣ a + X x ∣ \int \frac{X^{3/2}}{x} \, dx = \frac{X^{3/2}}{3} + a^2 \sqrt{X} - a^3 \ln\left| \frac{a + \sqrt{X}}{x} \right|
∫ x X 3/2 d x = 3 X 3/2 + a 2 X − a 3 ln x a + X
∫ X 3 / 2 x 2 d x = − X 3 / 2 x − 3 2 x X − 3 a 2 2 arcsin x a \int \frac{X^{3/2}}{x^2} \, dx = -\frac{X^{3/2}}{x} - \frac{3}{2} x \sqrt{X} - \frac{3a^2}{2} \arcsin\frac{x}{a}
∫ x 2 X 3/2 d x = − x X 3/2 − 2 3 x X − 2 3 a 2 arcsin a x
∫ X 3 / 2 x 3 d x = − X 3 / 2 2 x 2 − 3 X 2 + 3 a 2 ln ∣ a + X x ∣ \int \frac{X^{3/2}}{x^3} \, dx = -\frac{X^{3/2}}{2x^2} - \frac{3\sqrt{X}}{2} + \frac{3a}{2} \ln\left| \frac{a + \sqrt{X}}{x} \right|
∫ x 3 X 3/2 d x = − 2 x 2 X 3/2 − 2 3 X + 2 3 a ln x a + X
∫ d x X 3 / 2 = x a 2 X \int \frac{dx}{X^{3/2}} = \frac{x}{a^2 \sqrt{X}}
∫ X 3/2 d x = a 2 X x
∫ x d x X 3 / 2 = 1 X \int \frac{x\,dx}{X^{3/2}} = \frac{1}{\sqrt{X}}
∫ X 3/2 x d x = X 1
∫ x 2 d x X 3 / 2 = x X − arcsin x a \int \frac{x^2\,dx}{X^{3/2}} = \frac{x}{\sqrt{X}} - \arcsin\frac{x}{a}
∫ X 3/2 x 2 d x = X x − arcsin a x
∫ x 3 d x X 3 / 2 = X + a 2 X \int \frac{x^3\,dx}{X^{3/2}} = \sqrt{X} + \frac{a^2}{\sqrt{X}}
∫ X 3/2 x 3 d x = X + X a 2
∫ d x x X 3 / 2 = 1 a 2 X − 1 a 3 ln ∣ a + X x ∣ \int \frac{dx}{x X^{3/2}} = \frac{1}{a^2 \sqrt{X}} - \frac{1}{a^3} \ln\left| \frac{a + \sqrt{X}}{x} \right|
∫ x X 3/2 d x = a 2 X 1 − a 3 1 ln x a + X
∫ d x x 2 X 3 / 2 = − X a 4 x + x a 4 X \int \frac{dx}{x^2 X^{3/2}} = -\frac{\sqrt{X}}{a^4 x} + \frac{x}{a^4 \sqrt{X}}
∫ x 2 X 3/2 d x = − a 4 x X + a 4 X x
∫ d x x 3 X 3 / 2 = − 1 2 a 2 x 2 X + 3 2 a 4 X − 3 2 a 5 ln ∣ a + X x ∣ \int \frac{dx}{x^3 X^{3/2}} = -\frac{1}{2a^2 x^2 \sqrt{X}} + \frac{3}{2a^4 \sqrt{X}} - \frac{3}{2a^5} \ln\left| \frac{a + \sqrt{X}}{x} \right|
∫ x 3 X 3/2 d x = − 2 a 2 x 2 X 1 + 2 a 4 X 3 − 2 a 5 3 ln x a + X
All integrals assume a > 0 a > 0 a > 0 and ∣ x ∣ < a |x| < a ∣ x ∣ < a so that a 2 − x 2 \sqrt{a^2 - x^2} a 2 − x 2 is real.
X = x 2 + a 2 X = x^2 + a^2
X = x 2 + a 2
∫ X d x = 1 2 ( x X + a 2 ln ( x + X ) ) + C \int \sqrt{X} \, dx = \frac{1}{2} \left( x\sqrt{X} + a^2 \ln\bigl(x + \sqrt{X}\bigr) \right) + C
∫ X d x = 2 1 ( x X + a 2 ln ( x + X ) ) + C
∫ x X d x = 1 3 X 3 / 2 \int x\sqrt{X} \, dx = \frac{1}{3} X^{3/2}
∫ x X d x = 3 1 X 3/2
∫ x 2 X d x = x 4 X 3 / 2 − a 2 8 ( x X + a 2 ln ( x + X ) ) + C \int x^2 \sqrt{X} \, dx = \frac{x}{4} X^{3/2} - \frac{a^2}{8} \left( x\sqrt{X} + a^2 \ln\bigl(x + \sqrt{X}\bigr) \right) + C
∫ x 2 X d x = 4 x X 3/2 − 8 a 2 ( x X + a 2 ln ( x + X ) ) + C
∫ x 3 X d x = X 5 / 2 5 − a 2 X 3 / 2 3 \int x^3 \sqrt{X} \, dx = \frac{X^{5/2}}{5} - \frac{a^2 X^{3/2}}{3}
∫ x 3 X d x = 5 X 5/2 − 3 a 2 X 3/2
∫ X x d x = X − a ln ∣ a + X x ∣ \int \frac{\sqrt{X}}{x} \, dx = \sqrt{X} - a \ln\left| \frac{a + \sqrt{X}}{x} \right|
∫ x X d x = X − a ln x a + X
∫ X x 2 d x = − X x + ln ( x + X ) + C \int \frac{\sqrt{X}}{x^2} \, dx = -\frac{\sqrt{X}}{x} + \ln\bigl(x + \sqrt{X}\bigr) + C
∫ x 2 X d x = − x X + ln ( x + X ) + C
∫ X x 3 d x = − X 2 x 2 − 1 2 a ln ∣ a + X x ∣ \int \frac{\sqrt{X}}{x^3} \, dx = -\frac{\sqrt{X}}{2x^2} - \frac{1}{2a} \ln\left| \frac{a + \sqrt{X}}{x} \right|
∫ x 3 X d x = − 2 x 2 X − 2 a 1 ln x a + X
∫ d x X = ln ( x + X ) + C \int \frac{dx}{\sqrt{X}} = \ln\bigl(x + \sqrt{X}\bigr) + C
∫ X d x = ln ( x + X ) + C
∫ x d x X = X \int \frac{x\,dx}{\sqrt{X}} = \sqrt{X}
∫ X x d x = X
∫ x 2 d x X = x 2 X − a 2 2 ln ( x + X ) + C \int \frac{x^2\,dx}{\sqrt{X}} = \frac{x}{2} \sqrt{X} - \frac{a^2}{2} \ln\bigl(x + \sqrt{X}\bigr) + C
∫ X x 2 d x = 2 x X − 2 a 2 ln ( x + X ) + C
∫ x 3 d x X = X 3 / 2 3 − a 2 X \int \frac{x^3\,dx}{\sqrt{X}} = \frac{X^{3/2}}{3} - a^2 \sqrt{X}
∫ X x 3 d x = 3 X 3/2 − a 2 X
∫ d x x X = − 1 a ln ∣ a + X x ∣ \int \frac{dx}{x\sqrt{X}} = -\frac{1}{a} \ln\left| \frac{a + \sqrt{X}}{x} \right|
∫ x X d x = − a 1 ln x a + X
∫ d x x 2 X = − X a 2 x \int \frac{dx}{x^2\sqrt{X}} = -\frac{\sqrt{X}}{a^2 x}
∫ x 2 X d x = − a 2 x X
∫ d x x 3 X = − X 2 a 2 x 2 + 1 2 a 3 ln ∣ a + X x ∣ \int \frac{dx}{x^3\sqrt{X}} = -\frac{\sqrt{X}}{2a^2 x^2} + \frac{1}{2a^3} \ln\left| \frac{a + \sqrt{X}}{x} \right|
∫ x 3 X d x = − 2 a 2 x 2 X + 2 a 3 1 ln x a + X
∫ X 3 / 2 d x = 1 4 ( x X 3 / 2 + 3 a 2 x 2 X + 3 a 4 2 ln ( x + X ) ) + C \int X^{3/2} \, dx = \frac{1}{4} \left( x X^{3/2} + \frac{3a^2 x}{2} \sqrt{X} + \frac{3a^4}{2} \ln\bigl(x + \sqrt{X}\bigr) \right) + C
∫ X 3/2 d x = 4 1 ( x X 3/2 + 2 3 a 2 x X + 2 3 a 4 ln ( x + X ) ) + C
∫ x X 3 / 2 d x = 1 5 X 5 / 2 \int x X^{3/2} \, dx = \frac{1}{5} X^{5/2}
∫ x X 3/2 d x = 5 1 X 5/2
∫ x 2 X 3 / 2 d x = x 6 X 5 / 2 − a 2 24 ( x X 3 / 2 + 3 a 2 x 2 X + 3 a 4 2 ln ( x + X ) ) + C \int x^2 X^{3/2} \, dx = \frac{x}{6} X^{5/2} - \frac{a^2}{24} \left( x X^{3/2} + \frac{3a^2 x}{2} \sqrt{X} + \frac{3a^4}{2} \ln\bigl(x + \sqrt{X}\bigr) \right) + C
∫ x 2 X 3/2 d x = 6 x X 5/2 − 24 a 2 ( x X 3/2 + 2 3 a 2 x X + 2 3 a 4 ln ( x + X ) ) + C
∫ x 3 X 3 / 2 d x = X 7 / 2 7 − a 2 X 5 / 2 5 \int x^3 X^{3/2} \, dx = \frac{X^{7/2}}{7} - \frac{a^2 X^{5/2}}{5}
∫ x 3 X 3/2 d x = 7 X 7/2 − 5 a 2 X 5/2
∫ X 3 / 2 x d x = X 3 / 2 3 + a 2 X − a 3 ln ∣ a + X x ∣ \int \frac{X^{3/2}}{x} \, dx = \frac{X^{3/2}}{3} + a^2 \sqrt{X} - a^3 \ln\left| \frac{a + \sqrt{X}}{x} \right|
∫ x X 3/2 d x = 3 X 3/2 + a 2 X − a 3 ln x a + X
∫ X 3 / 2 x 2 d x = − X 3 / 2 x + 3 2 x X + 3 a 2 2 ln ( x + X ) + C \int \frac{X^{3/2}}{x^2} \, dx = -\frac{X^{3/2}}{x} + \frac{3}{2} x \sqrt{X} + \frac{3a^2}{2} \ln\bigl(x + \sqrt{X}\bigr) + C
∫ x 2 X 3/2 d x = − x X 3/2 + 2 3 x X + 2 3 a 2 ln ( x + X ) + C
∫ X 3 / 2 x 3 d x = − X 3 / 2 2 x 2 + 3 2 X − 3 a 2 ln ∣ a + X x ∣ \int \frac{X^{3/2}}{x^3} \, dx = -\frac{X^{3/2}}{2x^2} + \frac{3}{2} \sqrt{X} - \frac{3a}{2} \ln\left| \frac{a + \sqrt{X}}{x} \right|
∫ x 3 X 3/2 d x = − 2 x 2 X 3/2 + 2 3 X − 2 3 a ln x a + X
∫ d x X 3 / 2 = x a 2 X \int \frac{dx}{X^{3/2}} = \frac{x}{a^2 \sqrt{X}}
∫ X 3/2 d x = a 2 X x
∫ x d x X 3 / 2 = − 1 X \int \frac{x\,dx}{X^{3/2}} = -\frac{1}{\sqrt{X}}
∫ X 3/2 x d x = − X 1
∫ x 2 d x X 3 / 2 = − x X + ln ( x + X ) + C \int \frac{x^2\,dx}{X^{3/2}} = -\frac{x}{\sqrt{X}} + \ln\bigl(x + \sqrt{X}\bigr) + C
∫ X 3/2 x 2 d x = − X x + ln ( x + X ) + C
∫ x 3 d x X 3 / 2 = X + a 2 X \int \frac{x^3\,dx}{X^{3/2}} = \sqrt{X} + \frac{a^2}{\sqrt{X}}
∫ X 3/2 x 3 d x = X + X a 2
∫ d x x X 3 / 2 = 1 a 2 X − 1 a 3 ln ∣ a + X x ∣ \int \frac{dx}{x X^{3/2}} = \frac{1}{a^2 \sqrt{X}} - \frac{1}{a^3} \ln\left| \frac{a + \sqrt{X}}{x} \right|
∫ x X 3/2 d x = a 2 X 1 − a 3 1 ln x a + X
∫ d x x 2 X 3 / 2 = − X a 4 x − x a 4 X \int \frac{dx}{x^2 X^{3/2}} = -\frac{\sqrt{X}}{a^4 x} - \frac{x}{a^4 \sqrt{X}}
∫ x 2 X 3/2 d x = − a 4 x X − a 4 X x
∫ d x x 3 X 3 / 2 = − 1 2 a 2 x 2 X − 3 2 a 4 X + 3 2 a 6 ln ∣ a + X x ∣ \int \frac{dx}{x^3 X^{3/2}} = -\frac{1}{2a^2 x^2 \sqrt{X}} - \frac{3}{2a^4 \sqrt{X}} + \frac{3}{2a^6} \ln\left| \frac{a + \sqrt{X}}{x} \right|
∫ x 3 X 3/2 d x = − 2 a 2 x 2 X 1 − 2 a 4 X 3 + 2 a 6 3 ln x a + X
All integrals assume a > 0 a > 0 a > 0 . The notation Arsh ( x / a ) \operatorname{Arsh}(x/a) Arsh ( x / a ) is equivalent to ln ( x + x 2 + a 2 ) \ln(x + \sqrt{x^2+a^2}) ln ( x + x 2 + a 2 ) .
X = x 2 − a 2 ( x > a > 0 ) X = x^2 - a^2 \quad (x > a > 0)
X = x 2 − a 2 ( x > a > 0 )
∫ X d x = 1 2 ( x X − a 2 ln ∣ x + X ∣ ) + C \int \sqrt{X} \, dx = \frac{1}{2} \left( x\sqrt{X} - a^2 \ln\bigl|x + \sqrt{X}\bigr| \right) + C
∫ X d x = 2 1 ( x X − a 2 ln x + X ) + C
∫ x X d x = 1 3 X 3 / 2 \int x\sqrt{X} \, dx = \frac{1}{3} X^{3/2}
∫ x X d x = 3 1 X 3/2
∫ x 2 X d x = x 4 X 3 / 2 + a 2 8 ( x X − a 2 ln ∣ x + X ∣ ) + C \int x^2 \sqrt{X} \, dx = \frac{x}{4} X^{3/2} + \frac{a^2}{8} \left( x\sqrt{X} - a^2 \ln\bigl|x + \sqrt{X}\bigr| \right) + C
∫ x 2 X d x = 4 x X 3/2 + 8 a 2 ( x X − a 2 ln x + X ) + C
∫ x 3 X d x = X 5 / 2 5 + a 2 X 3 / 2 3 \int x^3 \sqrt{X} \, dx = \frac{X^{5/2}}{5} + \frac{a^2 X^{3/2}}{3}
∫ x 3 X d x = 5 X 5/2 + 3 a 2 X 3/2
∫ X x d x = X − a arccos a ∣ x ∣ \int \frac{\sqrt{X}}{x} \, dx = \sqrt{X} - a \arccos\frac{a}{|x|}
∫ x X d x = X − a arccos ∣ x ∣ a
∫ X x 2 d x = − X x + ln ∣ x + X ∣ + C \int \frac{\sqrt{X}}{x^2} \, dx = -\frac{\sqrt{X}}{x} + \ln\bigl|x + \sqrt{X}\bigr| + C
∫ x 2 X d x = − x X + ln x + X + C
∫ X x 3 d x = − X 2 x 2 + 1 2 a arccos a ∣ x ∣ \int \frac{\sqrt{X}}{x^3} \, dx = -\frac{\sqrt{X}}{2x^2} + \frac{1}{2a} \arccos\frac{a}{|x|}
∫ x 3 X d x = − 2 x 2 X + 2 a 1 arccos ∣ x ∣ a
∫ d x X = ln ∣ x + X ∣ + C \int \frac{dx}{\sqrt{X}} = \ln\bigl|x + \sqrt{X}\bigr| + C
∫ X d x = ln x + X + C
∫ x d x X = X \int \frac{x\,dx}{\sqrt{X}} = \sqrt{X}
∫ X x d x = X
∫ x 2 d x X = x 2 X + a 2 2 ln ∣ x + X ∣ + C \int \frac{x^2\,dx}{\sqrt{X}} = \frac{x}{2} \sqrt{X} + \frac{a^2}{2} \ln\bigl|x + \sqrt{X}\bigr| + C
∫ X x 2 d x = 2 x X + 2 a 2 ln x + X + C
∫ x 3 d x X = X 3 / 2 3 + a 2 X \int \frac{x^3\,dx}{\sqrt{X}} = \frac{X^{3/2}}{3} + a^2 \sqrt{X}
∫ X x 3 d x = 3 X 3/2 + a 2 X
∫ d x x X = 1 a arccos a ∣ x ∣ \int \frac{dx}{x\sqrt{X}} = \frac{1}{a} \arccos\frac{a}{|x|}
∫ x X d x = a 1 arccos ∣ x ∣ a
∫ d x x 2 X = X a 2 x \int \frac{dx}{x^2\sqrt{X}} = \frac{\sqrt{X}}{a^2 x}
∫ x 2 X d x = a 2 x X
∫ d x x 3 X = X 2 a 2 x 2 + 1 2 a 3 arccos a ∣ x ∣ \int \frac{dx}{x^3\sqrt{X}} = \frac{\sqrt{X}}{2a^2 x^2} + \frac{1}{2a^3} \arccos\frac{a}{|x|}
∫ x 3 X d x = 2 a 2 x 2 X + 2 a 3 1 arccos ∣ x ∣ a
∫ X 3 / 2 d x = 1 4 ( x X 3 / 2 + 3 a 2 x 2 X − 3 a 4 2 ln ∣ x + X ∣ ) + C \int X^{3/2} \, dx = \frac{1}{4} \left( x X^{3/2} + \frac{3a^2 x}{2} \sqrt{X} - \frac{3a^4}{2} \ln\bigl|x + \sqrt{X}\bigr| \right) + C
∫ X 3/2 d x = 4 1 ( x X 3/2 + 2 3 a 2 x X − 2 3 a 4 ln x + X ) + C
∫ x X 3 / 2 d x = 1 5 X 5 / 2 \int x X^{3/2} \, dx = \frac{1}{5} X^{5/2}
∫ x X 3/2 d x = 5 1 X 5/2
∫ x 2 X 3 / 2 d x = x 6 X 5 / 2 + a 2 24 ( x X 3 / 2 + 3 a 2 x 2 X − 3 a 4 2 ln ∣ x + X ∣ ) + C \int x^2 X^{3/2} \, dx = \frac{x}{6} X^{5/2} + \frac{a^2}{24} \left( x X^{3/2} + \frac{3a^2 x}{2} \sqrt{X} - \frac{3a^4}{2} \ln\bigl|x + \sqrt{X}\bigr| \right) + C
∫ x 2 X 3/2 d x = 6 x X 5/2 + 24 a 2 ( x X 3/2 + 2 3 a 2 x X − 2 3 a 4 ln x + X ) + C
∫ x 3 X 3 / 2 d x = X 7 / 2 7 + a 2 X 5 / 2 5 \int x^3 X^{3/2} \, dx = \frac{X^{7/2}}{7} + \frac{a^2 X^{5/2}}{5}
∫ x 3 X 3/2 d x = 7 X 7/2 + 5 a 2 X 5/2
∫ X 3 / 2 x d x = X 3 / 2 3 − a 2 X + a 3 arccos a ∣ x ∣ \int \frac{X^{3/2}}{x} \, dx = \frac{X^{3/2}}{3} - a^2 \sqrt{X} + a^3 \arccos\frac{a}{|x|}
∫ x X 3/2 d x = 3 X 3/2 − a 2 X + a 3 arccos ∣ x ∣ a
∫ X 3 / 2 x 2 d x = − X 3 / 2 x + 3 2 x X + 3 a 2 2 ln ∣ x + X ∣ + C \int \frac{X^{3/2}}{x^2} \, dx = -\frac{X^{3/2}}{x} + \frac{3}{2} x \sqrt{X} + \frac{3a^2}{2} \ln\bigl|x + \sqrt{X}\bigr| + C
∫ x 2 X 3/2 d x = − x X 3/2 + 2 3 x X + 2 3 a 2 ln x + X + C
∫ X 3 / 2 x 3 d x = − X 3 / 2 2 x 2 − 3 2 X − 3 a 2 arccos a ∣ x ∣ \int \frac{X^{3/2}}{x^3} \, dx = -\frac{X^{3/2}}{2x^2} - \frac{3}{2} \sqrt{X} - \frac{3a}{2} \arccos\frac{a}{|x|}
∫ x 3 X 3/2 d x = − 2 x 2 X 3/2 − 2 3 X − 2 3 a arccos ∣ x ∣ a
∫ d x X 3 / 2 = − x a 2 X \int \frac{dx}{X^{3/2}} = -\frac{x}{a^2 \sqrt{X}}
∫ X 3/2 d x = − a 2 X x
∫ x d x X 3 / 2 = − 1 X \int \frac{x\,dx}{X^{3/2}} = -\frac{1}{\sqrt{X}}
∫ X 3/2 x d x = − X 1
∫ x 2 d x X 3 / 2 = − x X − ln ∣ x + X ∣ + C \int \frac{x^2\,dx}{X^{3/2}} = -\frac{x}{\sqrt{X}} - \ln\bigl|x + \sqrt{X}\bigr| + C
∫ X 3/2 x 2 d x = − X x − ln x + X + C
∫ x 3 d x X 3 / 2 = X − a 2 X \int \frac{x^3\,dx}{X^{3/2}} = \sqrt{X} - \frac{a^2}{\sqrt{X}}
∫ X 3/2 x 3 d x = X − X a 2
∫ d x x X 3 / 2 = − 1 a 2 X − 1 a 3 arccos a ∣ x ∣ \int \frac{dx}{x X^{3/2}} = -\frac{1}{a^2 \sqrt{X}} - \frac{1}{a^3} \arccos\frac{a}{|x|}
∫ x X 3/2 d x = − a 2 X 1 − a 3 1 arccos ∣ x ∣ a
∫ d x x 2 X 3 / 2 = − X a 4 x + x a 4 X \int \frac{dx}{x^2 X^{3/2}} = -\frac{\sqrt{X}}{a^4 x} + \frac{x}{a^4 \sqrt{X}}
∫ x 2 X 3/2 d x = − a 4 x X + a 4 X x
∫ d x x 3 X 3 / 2 = − 1 2 a 2 x 2 X + 3 2 a 4 X − 3 2 a 6 arccos a ∣ x ∣ \int \frac{dx}{x^3 X^{3/2}} = -\frac{1}{2a^2 x^2 \sqrt{X}} + \frac{3}{2a^4 \sqrt{X}} - \frac{3}{2a^6} \arccos\frac{a}{|x|}
∫ x 3 X 3/2 d x = − 2 a 2 x 2 X 1 + 2 a 4 X 3 − 2 a 6 3 arccos ∣ x ∣ a
All integrals assume x > a > 0 x > a > 0 x > a > 0 . For x < − a x < -a x < − a , one can use the substitution x = − u x = -u x = − u and apply these formulas with absolute values. The function arccos ( a / x ) \arccos(a/x) arccos ( a / x ) can also be expressed as \arcsec ( x / a ) \arcsec(x/a) \arcsec ( x / a ) .
X = a x 2 + b x + c , Δ = 4 a c − b 2 , k = 4 a Δ . X = ax^2 + bx + c, \qquad \Delta = 4ac - b^2, \qquad k = \frac{4a}{\Delta}.
X = a x 2 + b x + c , Δ = 4 a c − b 2 , k = Δ 4 a .
∫ d x X = { 1 a ln ∣ 2 a X + 2 a x + b ∣ + C , a > 0 , 1 − a arcsin 2 a x + b − Δ + C , a < 0 , Δ < 0. \int \frac{dx}{\sqrt{X}} =
\begin{cases}
\displaystyle \frac{1}{\sqrt{a}} \ln\left| 2\sqrt{aX} + 2ax + b \right| + C, & a > 0, \\[2ex]
\displaystyle \frac{1}{\sqrt{-a}} \arcsin\frac{2ax+b}{\sqrt{-\Delta}} + C, & a < 0,\ \Delta < 0.
\end{cases}
∫ X d x = ⎩ ⎨ ⎧ a 1 ln 2 a X + 2 a x + b + C , − a 1 arcsin − Δ 2 a x + b + C , a > 0 , a < 0 , Δ < 0.
∫ d x x X = − 1 c ln ∣ 2 c X + 2 c + b x x ∣ ( c > 0 ) \int \frac{dx}{x\sqrt{X}} = -\frac{1}{\sqrt{c}} \ln\left| \frac{2\sqrt{cX} + 2c + bx}{x} \right| \quad (c > 0)
∫ x X d x = − c 1 ln x 2 c X + 2 c + b x ( c > 0 )
∫ d x X 3 / 2 = 2 ( 2 a x + b ) Δ X \int \frac{dx}{X^{3/2}} = \frac{2(2ax+b)}{\Delta\sqrt{X}}
∫ X 3/2 d x = Δ X 2 ( 2 a x + b )
∫ d x X ( 2 n + 1 ) / 2 = 2 ( 2 a x + b ) ( 2 n − 1 ) Δ X ( 2 n − 1 ) / 2 + 2 k ( n − 1 ) 2 n − 1 ∫ d x X ( 2 n − 1 ) / 2 \int \frac{dx}{X^{(2n+1)/2}} = \frac{2(2ax+b)}{(2n-1)\Delta X^{(2n-1)/2}} + \frac{2k(n-1)}{2n-1} \int \frac{dx}{X^{(2n-1)/2}}
∫ X ( 2 n + 1 ) /2 d x = ( 2 n − 1 ) Δ X ( 2 n − 1 ) /2 2 ( 2 a x + b ) + 2 n − 1 2 k ( n − 1 ) ∫ X ( 2 n − 1 ) /2 d x
∫ X d x = ( 2 a x + b ) X 4 a + Δ 8 a ∫ d x X (see 241) \int \sqrt{X} \, dx = \frac{(2ax+b)\sqrt{X}}{4a} + \frac{\Delta}{8a} \int \frac{dx}{\sqrt{X}} \qquad \text{(see 241)}
∫ X d x = 4 a ( 2 a x + b ) X + 8 a Δ ∫ X d x (see 241)
∫ X 3 / 2 d x = ( 2 a x + b ) X X 8 a + 3 Δ 16 a ∫ X d x (see 245) \int X^{3/2} \, dx = \frac{(2ax+b)X\sqrt{X}}{8a} + \frac{3\Delta}{16a} \int \sqrt{X} \, dx \qquad \text{(see 245)}
∫ X 3/2 d x = 8 a ( 2 a x + b ) X X + 16 a 3Δ ∫ X d x (see 245)
∫ X 5 / 2 d x = ( 2 a x + b ) X 2 X 12 a + 5 Δ 24 a ∫ X 3 / 2 d x (see 246) \int X^{5/2} \, dx = \frac{(2ax+b)X^2\sqrt{X}}{12a} + \frac{5\Delta}{24a} \int X^{3/2} \, dx \qquad \text{(see 246)}
∫ X 5/2 d x = 12 a ( 2 a x + b ) X 2 X + 24 a 5Δ ∫ X 3/2 d x (see 246)
∫ X ( 2 n + 1 ) / 2 d x = ( 2 a x + b ) X ( 2 n − 1 ) / 2 X 4 a n + ( 2 n − 1 ) Δ 8 a n ∫ X ( 2 n − 3 ) / 2 d x \int X^{(2n+1)/2} \, dx = \frac{(2ax+b)X^{(2n-1)/2}\sqrt{X}}{4an} + \frac{(2n-1)\Delta}{8an} \int X^{(2n-3)/2} \, dx
∫ X ( 2 n + 1 ) /2 d x = 4 an ( 2 a x + b ) X ( 2 n − 1 ) /2 X + 8 an ( 2 n − 1 ) Δ ∫ X ( 2 n − 3 ) /2 d x
∫ x d x X = X a − b 2 a ∫ d x X (see 241) \int \frac{x\,dx}{\sqrt{X}} = \frac{\sqrt{X}}{a} - \frac{b}{2a} \int \frac{dx}{\sqrt{X}} \qquad \text{(see 241)}
∫ X x d x = a X − 2 a b ∫ X d x (see 241)
∫ x d x X 3 / 2 = − 2 ( b x + 2 c ) Δ X \int \frac{x\,dx}{X^{3/2}} = -\frac{2(bx+2c)}{\Delta\sqrt{X}}
∫ X 3/2 x d x = − Δ X 2 ( b x + 2 c )
∫ x d x X ( 2 n + 1 ) / 2 = − 1 ( 2 n − 1 ) a X ( 2 n − 1 ) / 2 − b 2 a ∫ d x X ( 2 n + 1 ) / 2 (see 244) \int \frac{x\,dx}{X^{(2n+1)/2}} = -\frac{1}{(2n-1)a X^{(2n-1)/2}} - \frac{b}{2a} \int \frac{dx}{X^{(2n+1)/2}} \qquad \text{(see 244)}
∫ X ( 2 n + 1 ) /2 x d x = − ( 2 n − 1 ) a X ( 2 n − 1 ) /2 1 − 2 a b ∫ X ( 2 n + 1 ) /2 d x (see 244)
∫ x 2 d x X = ( x 2 a − 3 b 4 a 2 ) X + 3 b 2 − 4 a c 8 a 2 ∫ d x X (see 241) \int \frac{x^2\,dx}{\sqrt{X}} = \left( \frac{x}{2a} - \frac{3b}{4a^2} \right) \sqrt{X} + \frac{3b^2 - 4ac}{8a^2} \int \frac{dx}{\sqrt{X}} \qquad \text{(see 241)}
∫ X x 2 d x = ( 2 a x − 4 a 2 3 b ) X + 8 a 2 3 b 2 − 4 a c ∫ X d x (see 241)
∫ x 2 d x X 3 / 2 = ( 2 b 2 − 4 a c ) x + 2 b c a Δ X + 1 a ∫ d x X (see 241) \int \frac{x^2\,dx}{X^{3/2}} = \frac{(2b^2-4ac)x + 2bc}{a\Delta\sqrt{X}} + \frac{1}{a} \int \frac{dx}{\sqrt{X}} \qquad \text{(see 241)}
∫ X 3/2 x 2 d x = a Δ X ( 2 b 2 − 4 a c ) x + 2 b c + a 1 ∫ X d x (see 241)
∫ x X d x = X 3 / 2 3 a − b 2 a ∫ X d x (see 245) \int x\sqrt{X} \, dx = \frac{X^{3/2}}{3a} - \frac{b}{2a} \int \sqrt{X} \, dx \qquad \text{(see 245)}
∫ x X d x = 3 a X 3/2 − 2 a b ∫ X d x (see 245)
∫ x X 3 / 2 d x = X 5 / 2 5 a − b 2 a ∫ X 3 / 2 d x (see 246) \int x X^{3/2} \, dx = \frac{X^{5/2}}{5a} - \frac{b}{2a} \int X^{3/2} \, dx \qquad \text{(see 246)}
∫ x X 3/2 d x = 5 a X 5/2 − 2 a b ∫ X 3/2 d x (see 246)
∫ x X ( 2 n + 1 ) / 2 d x = X ( 2 n + 3 ) / 2 ( 2 n + 3 ) a − b 2 a ∫ X ( 2 n + 1 ) / 2 d x (see 248) \int x X^{(2n+1)/2} \, dx = \frac{X^{(2n+3)/2}}{(2n+3)a} - \frac{b}{2a} \int X^{(2n+1)/2} \, dx \qquad \text{(see 248)}
∫ x X ( 2 n + 1 ) /2 d x = ( 2 n + 3 ) a X ( 2 n + 3 ) /2 − 2 a b ∫ X ( 2 n + 1 ) /2 d x (see 248)
∫ x 2 X d x = x X 3 / 2 4 a − 5 b 12 a ⋅ X 3 / 2 a + 5 b 2 − 4 a c 8 a 2 ∫ X d x (see 245) \int x^2 \sqrt{X} \, dx = \frac{x X^{3/2}}{4a} - \frac{5b}{12a} \cdot \frac{X^{3/2}}{a} + \frac{5b^2 - 4ac}{8a^2} \int \sqrt{X} \, dx \qquad \text{(see 245)}
∫ x 2 X d x = 4 a x X 3/2 − 12 a 5 b ⋅ a X 3/2 + 8 a 2 5 b 2 − 4 a c ∫ X d x (see 245)
∫ d x x X = { − 1 c ln ∣ 2 c X + 2 c + b x x ∣ , c > 0 , 1 − c arcsin b x + 2 c ∣ x ∣ − Δ , c < 0. \int \frac{dx}{x\sqrt{X}} =
\begin{cases}
\displaystyle -\frac{1}{\sqrt{c}} \ln\left| \frac{2\sqrt{cX} + 2c + bx}{x} \right|, & c > 0, \\[2ex]
\displaystyle \frac{1}{\sqrt{-c}} \arcsin\frac{bx+2c}{|x|\sqrt{-\Delta}}, & c < 0.
\end{cases}
∫ x X d x = ⎩ ⎨ ⎧ − c 1 ln x 2 c X + 2 c + b x , − c 1 arcsin ∣ x ∣ − Δ b x + 2 c , c > 0 , c < 0.
∫ d x x 2 X = − X c x − b 2 c ∫ d x x X (see 258) \int \frac{dx}{x^2\sqrt{X}} = -\frac{\sqrt{X}}{cx} - \frac{b}{2c} \int \frac{dx}{x\sqrt{X}} \qquad \text{(see 258)}
∫ x 2 X d x = − c x X − 2 c b ∫ x X d x (see 258)
∫ X x d x = X + b 2 ∫ d x X + c ∫ d x x X (see 241, 258) \int \frac{\sqrt{X}}{x} \, dx = \sqrt{X} + \frac{b}{2} \int \frac{dx}{\sqrt{X}} + c \int \frac{dx}{x\sqrt{X}} \qquad \text{(see 241, 258)}
∫ x X d x = X + 2 b ∫ X d x + c ∫ x X d x (see 241, 258)
∫ X x 2 d x = − X x + a ∫ d x X + b 2 ∫ d x x X (see 241, 258) \int \frac{\sqrt{X}}{x^2} \, dx = -\frac{\sqrt{X}}{x} + a \int \frac{dx}{\sqrt{X}} + \frac{b}{2} \int \frac{dx}{x\sqrt{X}} \qquad \text{(see 241, 258)}
∫ x 2 X d x = − x X + a ∫ X d x + 2 b ∫ x X d x (see 241, 258)
∫ X ( 2 n + 1 ) / 2 x d x = X ( 2 n + 1 ) / 2 2 n + 1 + b 2 ∫ X ( 2 n − 1 ) / 2 d x + c ∫ X ( 2 n − 1 ) / 2 x d x \int \frac{X^{(2n+1)/2}}{x} \, dx = \frac{X^{(2n+1)/2}}{2n+1} + \frac{b}{2} \int X^{(2n-1)/2} \, dx + c \int \frac{X^{(2n-1)/2}}{x} \, dx
∫ x X ( 2 n + 1 ) /2 d x = 2 n + 1 X ( 2 n + 1 ) /2 + 2 b ∫ X ( 2 n − 1 ) /2 d x + c ∫ x X ( 2 n − 1 ) /2 d x
∫ d x x a x 4 + b x = − 2 b x a x 4 + b x \int \frac{dx}{x\sqrt{ax^4 + bx}} = -\frac{2}{bx} \sqrt{ax^4 + bx}
∫ x a x 4 + b x d x = − b x 2 a x 4 + b x
∫ d x 2 a x − x 2 = arcsin x − a a \int \frac{dx}{\sqrt{2ax - x^2}} = \arcsin\frac{x-a}{a}
∫ 2 a x − x 2 d x = arcsin a x − a
∫ x d x 2 a x − x 2 = − 2 a x − x 2 + a arcsin x − a a \int \frac{x\,dx}{\sqrt{2ax - x^2}} = -\sqrt{2ax - x^2} + a \arcsin\frac{x-a}{a}
∫ 2 a x − x 2 x d x = − 2 a x − x 2 + a arcsin a x − a
∫ 2 a x − x 2 d x = x − a 2 2 a x − x 2 + a 2 2 arcsin x − a a \int \sqrt{2ax - x^2} \, dx = \frac{x-a}{2} \sqrt{2ax - x^2} + \frac{a^2}{2} \arcsin\frac{x-a}{a}
∫ 2 a x − x 2 d x = 2 x − a 2 a x − x 2 + 2 a 2 arcsin a x − a
∫ d x ( a x 3 + b ) f x 3 + g = { 1 b a g − b f arctan a g − b f f x 3 + g b f x 3 + g − g a x 3 + b , a g > b f , 1 2 b b f − a g ln ∣ b f x 3 + g + g a x 3 + b b f x 3 + g − g a x 3 + b ∣ , a g < b f . \int \frac{dx}{(ax^3 + b)\sqrt{fx^3 + g}} =
\begin{cases}
\displaystyle \frac{1}{\sqrt{b}\sqrt{ag-bf}} \arctan\frac{\sqrt{ag-bf}\sqrt{fx^3+g}}{\sqrt{b}\sqrt{fx^3+g} - \sqrt{g}\sqrt{ax^3+b}}, & ag>bf, \\[2ex]
\displaystyle \frac{1}{2\sqrt{b}\sqrt{bf-ag}} \ln\left| \frac{\sqrt{b}\sqrt{fx^3+g} + \sqrt{g}\sqrt{ax^3+b}}{\sqrt{b}\sqrt{fx^3+g} - \sqrt{g}\sqrt{ax^3+b}} \right|, & ag<bf.
\end{cases}
∫ ( a x 3 + b ) f x 3 + g d x = ⎩ ⎨ ⎧ b a g − b f 1 arctan b f x 3 + g − g a x 3 + b a g − b f f x 3 + g , 2 b b f − a g 1 ln b f x 3 + g − g a x 3 + b b f x 3 + g + g a x 3 + b , a g > b f , a g < b f .
The formulas assume the radicals are defined in the integration domain. In recursive formulas, the reduction must be applied successively until reaching a known integral.
∫ a x + b n d x = n ( n + 1 ) a ( a x + b ) n + 1 n + C \int \sqrt[n]{ax + b} \, dx = \frac{n}{(n+1)a} (ax + b)^{\frac{n+1}{n}} + C
∫ n a x + b d x = ( n + 1 ) a n ( a x + b ) n n + 1 + C
∫ d x a x + b n = n ( n − 1 ) a ( a x + b ) n − 1 n + C ( n ≠ 1 ) \int \frac{dx}{\sqrt[n]{ax + b}} = \frac{n}{(n-1)a} (ax + b)^{\frac{n-1}{n}} + C \quad (n \neq 1)
∫ n a x + b d x = ( n − 1 ) a n ( a x + b ) n n − 1 + C ( n = 1 )
∫ d x x x n + a n = − 2 n a ln ∣ a + x n + a n x n / 2 ∣ + C \int \frac{dx}{x \sqrt{x^n + a^n}} = -\frac{2}{na} \ln\left| \frac{a + \sqrt{x^n + a^n}}{x^{n/2}} \right| + C
∫ x x n + a n d x = − na 2 ln x n /2 a + x n + a n + C
∫ d x x x n − a n = 2 n a arccos ( a x n / 2 ) + C ( x > a > 0 ) \int \frac{dx}{x \sqrt{x^n - a^n}} = \frac{2}{na} \arccos\left( \frac{a}{x^{n/2}} \right) + C \quad (x > a > 0)
∫ x x n − a n d x = na 2 arccos ( x n /2 a ) + C ( x > a > 0 )
∫ x d x a n − x n = 2 3 arcsin ( x n / 2 a n / 2 ) + C \int \frac{\sqrt{x} \, dx}{\sqrt{a^n - x^n}} = \frac{2}{3} \arcsin\left( \frac{x^{n/2}}{a^{n/2}} \right) + C
∫ a n − x n x d x = 3 2 arcsin ( a n /2 x n /2 ) + C
For the binomial integral ∫ x m ( a x n + b ) p d x \displaystyle \int x^m (ax^n + b)^p \, dx ∫ x m ( a x n + b ) p d x :
∫ x m ( a x n + b ) p d x = 1 m + n p + 1 [ x m + 1 ( a x n + b ) p + n p b ∫ x m ( a x n + b ) p − 1 d x ] \int x^m (ax^n + b)^p \, dx = \frac{1}{m+np+1} \left[ x^{m+1} (ax^n + b)^p + npb \int x^m (ax^n + b)^{p-1} \, dx \right]
∫ x m ( a x n + b ) p d x = m + n p + 1 1 [ x m + 1 ( a x n + b ) p + n p b ∫ x m ( a x n + b ) p − 1 d x ]
= 1 b n ( p + 1 ) [ − x m + 1 ( a x n + b ) p + 1 + ( m + n + n p + 1 ) ∫ x m ( a x n + b ) p + 1 d x ] = \frac{1}{bn(p+1)} \left[ -x^{m+1} (ax^n + b)^{p+1} + (m+n+np+1) \int x^m (ax^n + b)^{p+1} \, dx \right]
= bn ( p + 1 ) 1 [ − x m + 1 ( a x n + b ) p + 1 + ( m + n + n p + 1 ) ∫ x m ( a x n + b ) p + 1 d x ]
= 1 ( m + 1 ) b [ x m + 1 ( a x n + b ) p + 1 − a ( m + n + n p + 1 ) ∫ x m + n ( a x n + b ) p d x ] = \frac{1}{(m+1)b} \left[ x^{m+1} (ax^n + b)^{p+1} - a(m+n+np+1) \int x^{m+n} (ax^n + b)^p \, dx \right]
= ( m + 1 ) b 1 [ x m + 1 ( a x n + b ) p + 1 − a ( m + n + n p + 1 ) ∫ x m + n ( a x n + b ) p d x ]
= 1 a ( m + n p + 1 ) [ x m − n + 1 ( a x n + b ) p + 1 − ( m − n + 1 ) b ∫ x m − n ( a x n + b ) p d x ] = \frac{1}{a(m+np+1)} \left[ x^{m-n+1} (ax^n + b)^{p+1} - (m-n+1)b \int x^{m-n} (ax^n + b)^p \, dx \right]
= a ( m + n p + 1 ) 1 [ x m − n + 1 ( a x n + b ) p + 1 − ( m − n + 1 ) b ∫ x m − n ( a x n + b ) p d x ]
The reduction formulas are useful for lowering the exponent p p p or the degree m m m of the binomial integral. They are applied successively until an elementary integral is obtained.