These definite integrals are frequently used in mathematical analysis, physics, and statistics. They include exponential, trigonometric, logarithmic, and algebraic functions.
∫ 0 ∞ x n e − a x d x = Γ ( n + 1 ) a n + 1 , a > 0 , n > − 1. \int_0^\infty x^n e^{-ax} \, dx = \frac{\Gamma(n+1)}{a^{n+1}}, \quad a > 0,\ n > -1.
∫ 0 ∞ x n e − a x d x = a n + 1 Γ ( n + 1 ) , a > 0 , n > − 1.
For positive integer n n n :
∫ 0 ∞ x n e − a x d x = n ! a n + 1 . \int_0^\infty x^n e^{-ax} \, dx = \frac{n!}{a^{n+1}}.
∫ 0 ∞ x n e − a x d x = a n + 1 n ! .
∫ 0 ∞ x n e − a x 2 d x = Γ ( n + 1 2 ) 2 a ( n + 1 ) / 2 , a > 0 , n > − 1. \int_0^\infty x^n e^{-ax^2} \, dx = \frac{\Gamma\left(\frac{n+1}{2}\right)}{2a^{(n+1)/2}}, \quad a > 0,\ n > -1.
∫ 0 ∞ x n e − a x 2 d x = 2 a ( n + 1 ) /2 Γ ( 2 n + 1 ) , a > 0 , n > − 1.
Particular cases:
If n = 2 k n = 2k n = 2 k (even):∫ 0 ∞ x 2 k e − a x 2 d x = ( 2 k − 1 ) ! ! π 2 k + 1 a k + 1 / 2 . \int_0^\infty x^{2k} e^{-ax^2} \, dx = \frac{(2k-1)!! \sqrt{\pi}}{2^{k+1} a^{k+1/2}}.
∫ 0 ∞ x 2 k e − a x 2 d x = 2 k + 1 a k + 1/2 ( 2 k − 1 )!! π .
If n = 2 k + 1 n = 2k+1 n = 2 k + 1 (odd):∫ 0 ∞ x 2 k + 1 e − a x 2 d x = k ! 2 a k + 1 . \int_0^\infty x^{2k+1} e^{-ax^2} \, dx = \frac{k!}{2a^{k+1}}.
∫ 0 ∞ x 2 k + 1 e − a x 2 d x = 2 a k + 1 k ! .
∫ 0 ∞ e − a 2 x 2 d x = π 2 a , a > 0. \int_0^\infty e^{-a^2 x^2} \, dx = \frac{\sqrt{\pi}}{2a}, \quad a > 0.
∫ 0 ∞ e − a 2 x 2 d x = 2 a π , a > 0.
∫ 0 ∞ x 2 e − a 2 x 2 d x = π 4 a 3 , a > 0. \int_0^\infty x^2 e^{-a^2 x^2} \, dx = \frac{\sqrt{\pi}}{4a^3}, \quad a > 0.
∫ 0 ∞ x 2 e − a 2 x 2 d x = 4 a 3 π , a > 0.
∫ 0 ∞ e − a 2 x 2 cos ( b x ) d x = π 2 a e − b 2 / ( 4 a 2 ) , a > 0. \int_0^\infty e^{-a^2 x^2} \cos(bx) \, dx = \frac{\sqrt{\pi}}{2a} e^{-b^2/(4a^2)}, \quad a > 0.
∫ 0 ∞ e − a 2 x 2 cos ( b x ) d x = 2 a π e − b 2 / ( 4 a 2 ) , a > 0.
∫ 0 ∞ x e x − 1 d x = π 2 6 . \int_0^\infty \frac{x}{e^x - 1} \, dx = \frac{\pi^2}{6}.
∫ 0 ∞ e x − 1 x d x = 6 π 2 .
∫ 0 ∞ x e x + 1 d x = π 2 12 . \int_0^\infty \frac{x}{e^x + 1} \, dx = \frac{\pi^2}{12}.
∫ 0 ∞ e x + 1 x d x = 12 π 2 .
∫ 0 ∞ e − a x sin x x d x = arctan ( 1 a ) , a > 0. \int_0^\infty \frac{e^{-ax} \sin x}{x} \, dx = \arctan\left(\frac{1}{a}\right), \quad a > 0.
∫ 0 ∞ x e − a x sin x d x = arctan ( a 1 ) , a > 0.
∫ 0 ∞ e − x ln x d x = − γ , \int_0^\infty e^{-x} \ln x \, dx = -\gamma,
∫ 0 ∞ e − x ln x d x = − γ ,
where γ ≈ 0.5772 \gamma \approx 0.5772 γ ≈ 0.5772 is the Euler-Mascheroni constant.
∫ 0 π / 2 sin 2 α + 1 x cos 2 β + 1 x d x = Γ ( α + 1 ) Γ ( β + 1 ) 2 Γ ( α + β + 2 ) = 1 2 B ( α + 1 , β + 1 ) , \int_0^{\pi/2} \sin^{2\alpha+1} x \cos^{2\beta+1} x \, dx = \frac{\Gamma(\alpha+1)\Gamma(\beta+1)}{2\Gamma(\alpha+\beta+2)} = \frac{1}{2} B(\alpha+1, \beta+1),
∫ 0 π /2 sin 2 α + 1 x cos 2 β + 1 x d x = 2Γ ( α + β + 2 ) Γ ( α + 1 ) Γ ( β + 1 ) = 2 1 B ( α + 1 , β + 1 ) ,
valid for α > − 1 , β > − 1 \alpha > -1, \beta > -1 α > − 1 , β > − 1 .
∫ 0 ∞ sin ( a x ) x d x = { π 2 , a > 0 , − π 2 , a < 0. \int_0^\infty \frac{\sin(ax)}{x} \, dx =
\begin{cases}
\frac{\pi}{2}, & a > 0, \\
-\frac{\pi}{2}, & a < 0.
\end{cases}
∫ 0 ∞ x sin ( a x ) d x = { 2 π , − 2 π , a > 0 , a < 0.
∫ 0 ∞ tan ( a x ) x d x = { π 2 , a > 0 , − π 2 , a < 0. \int_0^\infty \frac{\tan(ax)}{x} \, dx =
\begin{cases}
\frac{\pi}{2}, & a > 0, \\
-\frac{\pi}{2}, & a < 0.
\end{cases}
∫ 0 ∞ x tan ( a x ) d x = { 2 π , − 2 π , a > 0 , a < 0.
∫ 0 ∞ cos ( a x ) − cos ( b x ) x d x = ln ( b a ) , a , b > 0. \int_0^\infty \frac{\cos(ax) - \cos(bx)}{x} \, dx = \ln\left(\frac{b}{a}\right), \quad a,b > 0.
∫ 0 ∞ x cos ( a x ) − cos ( b x ) d x = ln ( a b ) , a , b > 0.
∫ 0 ∞ sin x cos ( a x ) x d x = { π 2 , ∣ a ∣ < 1 , π 4 , ∣ a ∣ = 1 , 0 , ∣ a ∣ > 1. \int_0^\infty \frac{\sin x \cos(ax)}{x} \, dx =
\begin{cases}
\frac{\pi}{2}, & |a| < 1, \\
\frac{\pi}{4}, & |a| = 1, \\
0, & |a| > 1.
\end{cases}
∫ 0 ∞ x sin x cos ( a x ) d x = ⎩ ⎨ ⎧ 2 π , 4 π , 0 , ∣ a ∣ < 1 , ∣ a ∣ = 1 , ∣ a ∣ > 1.
∫ 0 ∞ sin x x d x = ∫ 0 ∞ cos x x d x = π 2 . \int_0^\infty \frac{\sin x}{\sqrt{x}} \, dx = \int_0^\infty \frac{\cos x}{\sqrt{x}} \, dx = \sqrt{\frac{\pi}{2}}.
∫ 0 ∞ x sin x d x = ∫ 0 ∞ x cos x d x = 2 π .
∫ 0 ∞ x sin ( b x ) a 2 + x 2 d x = π 2 e − a ∣ b ∣ ⋅ sgn ( b ) . \int_0^\infty \frac{x \sin(bx)}{a^2 + x^2} \, dx = \frac{\pi}{2} e^{-a|b|} \cdot \operatorname{sgn}(b).
∫ 0 ∞ a 2 + x 2 x sin ( b x ) d x = 2 π e − a ∣ b ∣ ⋅ sgn ( b ) .
∫ 0 ∞ cos ( a x ) 1 + x 2 d x = π 2 e − ∣ a ∣ . \int_0^\infty \frac{\cos(ax)}{1 + x^2} \, dx = \frac{\pi}{2} e^{-|a|}.
∫ 0 ∞ 1 + x 2 cos ( a x ) d x = 2 π e − ∣ a ∣ .
∫ 0 ∞ sin 2 ( a x ) x 2 d x = π 2 ∣ a ∣ . \int_0^\infty \frac{\sin^2(ax)}{x^2} \, dx = \frac{\pi}{2} |a|.
∫ 0 ∞ x 2 sin 2 ( a x ) d x = 2 π ∣ a ∣.
∫ − ∞ ∞ sin ( x 2 ) d x = ∫ − ∞ ∞ cos ( x 2 ) d x = π 2 . \int_{-\infty}^\infty \sin(x^2) \, dx = \int_{-\infty}^\infty \cos(x^2) \, dx = \sqrt{\frac{\pi}{2}}.
∫ − ∞ ∞ sin ( x 2 ) d x = ∫ − ∞ ∞ cos ( x 2 ) d x = 2 π .
∫ 0 π / 2 sin x 1 − k 2 sin 2 x d x = 1 2 k ln ( 1 + k 1 − k ) , ∣ k ∣ < 1. \int_0^{\pi/2} \frac{\sin x}{\sqrt{1 - k^2 \sin^2 x}} \, dx = \frac{1}{2k} \ln\left(\frac{1+k}{1-k}\right), \quad |k| < 1.
∫ 0 π /2 1 − k 2 sin 2 x sin x d x = 2 k 1 ln ( 1 − k 1 + k ) , ∣ k ∣ < 1.
∫ 0 π / 2 cos x 1 − k 2 sin 2 x d x = 1 k arcsin k , ∣ k ∣ < 1. \int_0^{\pi/2} \frac{\cos x}{\sqrt{1 - k^2 \sin^2 x}} \, dx = \frac{1}{k} \arcsin k, \quad |k| < 1.
∫ 0 π /2 1 − k 2 sin 2 x cos x d x = k 1 arcsin k , ∣ k ∣ < 1.
∫ 0 π / 2 sin 2 x 1 − k 2 sin 2 x d x = 1 k 2 ( K − E ) , ∣ k ∣ < 1. \int_0^{\pi/2} \frac{\sin^2 x}{\sqrt{1 - k^2 \sin^2 x}} \, dx = \frac{1}{k^2} (K - E), \quad |k| < 1.
∫ 0 π /2 1 − k 2 sin 2 x sin 2 x d x = k 2 1 ( K − E ) , ∣ k ∣ < 1.
∫ 0 π / 2 cos 2 x 1 − k 2 sin 2 x d x = 1 k 2 [ E − ( 1 − k 2 ) K ] , ∣ k ∣ < 1. \int_0^{\pi/2} \frac{\cos^2 x}{\sqrt{1 - k^2 \sin^2 x}} \, dx = \frac{1}{k^2} [E - (1-k^2)K], \quad |k| < 1.
∫ 0 π /2 1 − k 2 sin 2 x cos 2 x d x = k 2 1 [ E − ( 1 − k 2 ) K ] , ∣ k ∣ < 1.
Here K = K ( k ) K = K(k) K = K ( k ) and E = E ( k ) E = E(k) E = E ( k ) are the complete elliptic integrals of the first and second kind.
∫ 0 π cos ( n x ) 1 − 2 b cos x + b 2 d x = π b n 1 − b 2 , ∣ b ∣ < 1 , n ∈ N 0 . \int_0^\pi \frac{\cos(nx)}{1 - 2b\cos x + b^2} \, dx = \frac{\pi b^n}{1-b^2}, \quad |b| < 1,\ n \in \mathbb{N}_0.
∫ 0 π 1 − 2 b cos x + b 2 cos ( n x ) d x = 1 − b 2 π b n , ∣ b ∣ < 1 , n ∈ N 0 .
∫ 0 1 ln ( ln x ) d x = − γ . \int_0^1 \ln(\ln x) \, dx = -\gamma.
∫ 0 1 ln ( ln x ) d x = − γ .
∫ 0 1 ln x x − 1 d x = π 2 6 . \int_0^1 \frac{\ln x}{x-1} \, dx = \frac{\pi^2}{6}.
∫ 0 1 x − 1 ln x d x = 6 π 2 .
∫ 0 1 ln x x + 1 d x = − π 2 12 . \int_0^1 \frac{\ln x}{x+1} \, dx = -\frac{\pi^2}{12}.
∫ 0 1 x + 1 ln x d x = − 12 π 2 .
∫ 0 1 ln x x 2 − 1 d x = − π 2 8 . \int_0^1 \frac{\ln x}{x^2-1} \, dx = -\frac{\pi^2}{8}.
∫ 0 1 x 2 − 1 ln x d x = − 8 π 2 .
∫ 0 1 ln ( 1 + x ) 1 + x 2 d x = π 8 ln 2. \int_0^1 \frac{\ln(1+x)}{1+x^2} \, dx = \frac{\pi}{8} \ln 2.
∫ 0 1 1 + x 2 ln ( 1 + x ) d x = 8 π ln 2.
∫ 0 1 [ ln ( 1 x ) ] a d x = Γ ( a + 1 ) , a > − 1. \int_0^1 \left[\ln\left(\frac{1}{x}\right)\right]^a \, dx = \Gamma(a+1), \quad a > -1.
∫ 0 1 [ ln ( x 1 ) ] a d x = Γ ( a + 1 ) , a > − 1.
∫ 0 π / 2 ln ( sin x ) d x = ∫ 0 π / 2 ln ( cos x ) d x = − π 2 ln 2. \int_0^{\pi/2} \ln(\sin x) \, dx = \int_0^{\pi/2} \ln(\cos x) \, dx = -\frac{\pi}{2} \ln 2.
∫ 0 π /2 ln ( sin x ) d x = ∫ 0 π /2 ln ( cos x ) d x = − 2 π ln 2.
∫ 0 π / 2 x ln ( sin x ) d x = − π 2 8 ln 2. \int_0^{\pi/2} x \ln(\sin x) \, dx = -\frac{\pi^2}{8} \ln 2.
∫ 0 π /2 x ln ( sin x ) d x = − 8 π 2 ln 2.
∫ 0 π / 2 sin x ln ( sin x ) d x = ln 2 − 1. \int_0^{\pi/2} \sin x \ln(\sin x) \, dx = \ln 2 - 1.
∫ 0 π /2 sin x ln ( sin x ) d x = ln 2 − 1.
∫ 0 π ln ( a ± b cos x ) d x = π ln ( a + a 2 − b 2 2 ) , a ≥ b > 0. \int_0^\pi \ln(a \pm b\cos x) \, dx = \pi \ln\left(\frac{a + \sqrt{a^2 - b^2}}{2}\right), \quad a \geq b > 0.
∫ 0 π ln ( a ± b cos x ) d x = π ln ( 2 a + a 2 − b 2 ) , a ≥ b > 0.
∫ 0 π ln ( a 2 − 2 a b cos x + b 2 ) d x = { 2 π ln a , a ≥ b > 0 , 2 π ln b , b ≥ a > 0. \int_0^\pi \ln(a^2 - 2ab\cos x + b^2) \, dx =
\begin{cases}
2\pi \ln a, & a \geq b > 0, \\
2\pi \ln b, & b \geq a > 0.
\end{cases}
∫ 0 π ln ( a 2 − 2 ab cos x + b 2 ) d x = { 2 π ln a , 2 π ln b , a ≥ b > 0 , b ≥ a > 0.
∫ 0 π / 2 ln ( tan x ) d x = 0. \int_0^{\pi/2} \ln(\tan x) \, dx = 0.
∫ 0 π /2 ln ( tan x ) d x = 0.
∫ 0 π / 4 ln ( 1 + tan x ) d x = π 8 ln 2. \int_0^{\pi/4} \ln(1+\tan x) \, dx = \frac{\pi}{8} \ln 2.
∫ 0 π /4 ln ( 1 + tan x ) d x = 8 π ln 2.
∫ 0 1 x α ( 1 − x ) β d x = B ( α + 1 , β + 1 ) = Γ ( α + 1 ) Γ ( β + 1 ) Γ ( α + β + 2 ) , \int_0^1 x^\alpha (1-x)^\beta \, dx = B(\alpha+1, \beta+1) = \frac{\Gamma(\alpha+1)\Gamma(\beta+1)}{\Gamma(\alpha+\beta+2)},
∫ 0 1 x α ( 1 − x ) β d x = B ( α + 1 , β + 1 ) = Γ ( α + β + 2 ) Γ ( α + 1 ) Γ ( β + 1 ) ,
valid for α > − 1 , β > − 1 \alpha > -1, \beta > -1 α > − 1 , β > − 1 .
∫ 0 ∞ d x ( 1 + x ) x a = π sin ( π a ) , 0 < a < 1. \int_0^\infty \frac{dx}{(1+x)x^a} = \frac{\pi}{\sin(\pi a)}, \quad 0 < a < 1.
∫ 0 ∞ ( 1 + x ) x a d x = sin ( πa ) π , 0 < a < 1.
∫ 0 ∞ d x ( 1 − x ) x a = − π cot ( π a ) , 0 < a < 1. \int_0^\infty \frac{dx}{(1-x)x^a} = -\pi \cot(\pi a), \quad 0 < a < 1.
∫ 0 ∞ ( 1 − x ) x a d x = − π cot ( πa ) , 0 < a < 1.
∫ 0 ∞ x a − 1 1 + x b d x = π b sin ( π a b ) , 0 < a < b . \int_0^\infty \frac{x^{a-1}}{1+x^b} \, dx = \frac{\pi}{b \sin\left(\frac{\pi a}{b}\right)}, \quad 0 < a < b.
∫ 0 ∞ 1 + x b x a − 1 d x = b sin ( b πa ) π , 0 < a < b .
∫ 0 1 d x 1 − x a = π Γ ( 1 a ) a Γ ( 1 a + 1 2 ) . \int_0^1 \frac{dx}{\sqrt{1-x^a}} = \frac{\sqrt{\pi}\, \Gamma\left(\frac{1}{a}\right)}{a\, \Gamma\left(\frac{1}{a}+\frac{1}{2}\right)}.
∫ 0 1 1 − x a d x = a Γ ( a 1 + 2 1 ) π Γ ( a 1 ) .
∫ 0 1 d x 1 + 2 x cos a + x 2 = a 2 sin a , 0 < a < π . \int_0^1 \frac{dx}{1+2x\cos a + x^2} = \frac{a}{2\sin a}, \quad 0 < a < \pi.
∫ 0 1 1 + 2 x cos a + x 2 d x = 2 sin a a , 0 < a < π .
∫ 0 ∞ d x 1 + 2 x cos a + x 2 = a sin a , 0 < a < π . \int_0^\infty \frac{dx}{1+2x\cos a + x^2} = \frac{a}{\sin a}, \quad 0 < a < \pi.
∫ 0 ∞ 1 + 2 x cos a + x 2 d x = sin a a , 0 < a < π .
Special Functions:
Γ ( x ) \Gamma(x) Γ ( x ) : Gamma function (Euler's integral of the second kind).
B ( x , y ) B(x,y) B ( x , y ) : Beta function, B ( x , y ) = Γ ( x ) Γ ( y ) Γ ( x + y ) B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} B ( x , y ) = Γ ( x + y ) Γ ( x ) Γ ( y ) .
K ( k ) , E ( k ) K(k), E(k) K ( k ) , E ( k ) : Complete elliptic integrals of the first and second kind.
γ \gamma γ : Euler-Mascheroni constant (≈ 0.5772 \approx 0.5772 ≈ 0.5772 ).
Convergence Conditions: All formulas explicitly include the necessary conditions for the convergence of the integrals.
Relations Between Integrals: Some integrals are related (for example, 25 to 9, 26 to 6, 27 to 7).
References: E. Goursat, Cours d'analyse mathématique , Vol. II; standard tables of special functions.