equationzone

Integral Calculus

Table of Important Definite Integrals

These definite integrals are frequently used in mathematical analysis, physics, and statistics. They include exponential, trigonometric, logarithmic, and algebraic functions.

1. Integrals with Exponential Functions

1.1 Integrals of the form xneaxx^n e^{-ax}

0xneaxdx=Γ(n+1)an+1,a>0, n>1.\int_0^\infty x^n e^{-ax} \, dx = \frac{\Gamma(n+1)}{a^{n+1}}, \quad a > 0,\ n > -1.

For positive integer nn:

0xneaxdx=n!an+1.\int_0^\infty x^n e^{-ax} \, dx = \frac{n!}{a^{n+1}}.

0xneax2dx=Γ(n+12)2a(n+1)/2,a>0, n>1.\int_0^\infty x^n e^{-ax^2} \, dx = \frac{\Gamma\left(\frac{n+1}{2}\right)}{2a^{(n+1)/2}}, \quad a > 0,\ n > -1.

Particular cases:

  • If n=2kn = 2k (even):

    0x2keax2dx=(2k1)!!π2k+1ak+1/2.\int_0^\infty x^{2k} e^{-ax^2} \, dx = \frac{(2k-1)!! \sqrt{\pi}}{2^{k+1} a^{k+1/2}}.

  • If n=2k+1n = 2k+1 (odd):

    0x2k+1eax2dx=k!2ak+1.\int_0^\infty x^{2k+1} e^{-ax^2} \, dx = \frac{k!}{2a^{k+1}}.

0ea2x2dx=π2a,a>0.\int_0^\infty e^{-a^2 x^2} \, dx = \frac{\sqrt{\pi}}{2a}, \quad a > 0.

0x2ea2x2dx=π4a3,a>0.\int_0^\infty x^2 e^{-a^2 x^2} \, dx = \frac{\sqrt{\pi}}{4a^3}, \quad a > 0.

0ea2x2cos(bx)dx=π2aeb2/(4a2),a>0.\int_0^\infty e^{-a^2 x^2} \cos(bx) \, dx = \frac{\sqrt{\pi}}{2a} e^{-b^2/(4a^2)}, \quad a > 0.

1.3 Integrals with Exponential Denominators

0xex1dx=π26.\int_0^\infty \frac{x}{e^x - 1} \, dx = \frac{\pi^2}{6}.

0xex+1dx=π212.\int_0^\infty \frac{x}{e^x + 1} \, dx = \frac{\pi^2}{12}.

0eaxsinxxdx=arctan(1a),a>0.\int_0^\infty \frac{e^{-ax} \sin x}{x} \, dx = \arctan\left(\frac{1}{a}\right), \quad a > 0.

0exlnxdx=γ,\int_0^\infty e^{-x} \ln x \, dx = -\gamma,

where γ0.5772\gamma \approx 0.5772 is the Euler-Mascheroni constant.


2. Integrals with Trigonometric Functions

2.1 Integrals of Powers of Sine and Cosine

0π/2sin2α+1xcos2β+1xdx=Γ(α+1)Γ(β+1)2Γ(α+β+2)=12B(α+1,β+1),\int_0^{\pi/2} \sin^{2\alpha+1} x \cos^{2\beta+1} x \, dx = \frac{\Gamma(\alpha+1)\Gamma(\beta+1)}{2\Gamma(\alpha+\beta+2)} = \frac{1}{2} B(\alpha+1, \beta+1),

valid for α>1,β>1\alpha > -1, \beta > -1.

2.2 Integrals of the form sin(ax)x\frac{\sin(ax)}{x}

0sin(ax)xdx={π2,a>0,π2,a<0.\int_0^\infty \frac{\sin(ax)}{x} \, dx = \begin{cases} \frac{\pi}{2}, & a > 0, \\ -\frac{\pi}{2}, & a < 0. \end{cases}

0tan(ax)xdx={π2,a>0,π2,a<0.\int_0^\infty \frac{\tan(ax)}{x} \, dx = \begin{cases} \frac{\pi}{2}, & a > 0, \\ -\frac{\pi}{2}, & a < 0. \end{cases}

2.3 Integrals with Trigonometric Combinations

0cos(ax)cos(bx)xdx=ln(ba),a,b>0.\int_0^\infty \frac{\cos(ax) - \cos(bx)}{x} \, dx = \ln\left(\frac{b}{a}\right), \quad a,b > 0.

0sinxcos(ax)xdx={π2,a<1,π4,a=1,0,a>1.\int_0^\infty \frac{\sin x \cos(ax)}{x} \, dx = \begin{cases} \frac{\pi}{2}, & |a| < 1, \\ \frac{\pi}{4}, & |a| = 1, \\ 0, & |a| > 1. \end{cases}

0sinxxdx=0cosxxdx=π2.\int_0^\infty \frac{\sin x}{\sqrt{x}} \, dx = \int_0^\infty \frac{\cos x}{\sqrt{x}} \, dx = \sqrt{\frac{\pi}{2}}.

2.4 Integrals with Rational Functions

0xsin(bx)a2+x2dx=π2eabsgn(b).\int_0^\infty \frac{x \sin(bx)}{a^2 + x^2} \, dx = \frac{\pi}{2} e^{-a|b|} \cdot \operatorname{sgn}(b).

0cos(ax)1+x2dx=π2ea.\int_0^\infty \frac{\cos(ax)}{1 + x^2} \, dx = \frac{\pi}{2} e^{-|a|}.

0sin2(ax)x2dx=π2a.\int_0^\infty \frac{\sin^2(ax)}{x^2} \, dx = \frac{\pi}{2} |a|.

sin(x2)dx=cos(x2)dx=π2.\int_{-\infty}^\infty \sin(x^2) \, dx = \int_{-\infty}^\infty \cos(x^2) \, dx = \sqrt{\frac{\pi}{2}}.

0π/2sinx1k2sin2xdx=12kln(1+k1k),k<1.\int_0^{\pi/2} \frac{\sin x}{\sqrt{1 - k^2 \sin^2 x}} \, dx = \frac{1}{2k} \ln\left(\frac{1+k}{1-k}\right), \quad |k| < 1.

0π/2cosx1k2sin2xdx=1karcsink,k<1.\int_0^{\pi/2} \frac{\cos x}{\sqrt{1 - k^2 \sin^2 x}} \, dx = \frac{1}{k} \arcsin k, \quad |k| < 1.

0π/2sin2x1k2sin2xdx=1k2(KE),k<1.\int_0^{\pi/2} \frac{\sin^2 x}{\sqrt{1 - k^2 \sin^2 x}} \, dx = \frac{1}{k^2} (K - E), \quad |k| < 1.

0π/2cos2x1k2sin2xdx=1k2[E(1k2)K],k<1.\int_0^{\pi/2} \frac{\cos^2 x}{\sqrt{1 - k^2 \sin^2 x}} \, dx = \frac{1}{k^2} [E - (1-k^2)K], \quad |k| < 1.

Here K=K(k)K = K(k) and E=E(k)E = E(k) are the complete elliptic integrals of the first and second kind.

0πcos(nx)12bcosx+b2dx=πbn1b2,b<1, nN0.\int_0^\pi \frac{\cos(nx)}{1 - 2b\cos x + b^2} \, dx = \frac{\pi b^n}{1-b^2}, \quad |b| < 1,\ n \in \mathbb{N}_0.


3. Integrals with Logarithmic Functions

01ln(lnx)dx=γ.\int_0^1 \ln(\ln x) \, dx = -\gamma.

01lnxx1dx=π26.\int_0^1 \frac{\ln x}{x-1} \, dx = \frac{\pi^2}{6}.

01lnxx+1dx=π212.\int_0^1 \frac{\ln x}{x+1} \, dx = -\frac{\pi^2}{12}.

01lnxx21dx=π28.\int_0^1 \frac{\ln x}{x^2-1} \, dx = -\frac{\pi^2}{8}.

01ln(1+x)1+x2dx=π8ln2.\int_0^1 \frac{\ln(1+x)}{1+x^2} \, dx = \frac{\pi}{8} \ln 2.

01[ln(1x)]adx=Γ(a+1),a>1.\int_0^1 \left[\ln\left(\frac{1}{x}\right)\right]^a \, dx = \Gamma(a+1), \quad a > -1.

3.2 Trigonometric Integrals with Logarithms

0π/2ln(sinx)dx=0π/2ln(cosx)dx=π2ln2.\int_0^{\pi/2} \ln(\sin x) \, dx = \int_0^{\pi/2} \ln(\cos x) \, dx = -\frac{\pi}{2} \ln 2.

0π/2xln(sinx)dx=π28ln2.\int_0^{\pi/2} x \ln(\sin x) \, dx = -\frac{\pi^2}{8} \ln 2.

0π/2sinxln(sinx)dx=ln21.\int_0^{\pi/2} \sin x \ln(\sin x) \, dx = \ln 2 - 1.

0πln(a±bcosx)dx=πln(a+a2b22),ab>0.\int_0^\pi \ln(a \pm b\cos x) \, dx = \pi \ln\left(\frac{a + \sqrt{a^2 - b^2}}{2}\right), \quad a \geq b > 0.

0πln(a22abcosx+b2)dx={2πlna,ab>0,2πlnb,ba>0.\int_0^\pi \ln(a^2 - 2ab\cos x + b^2) \, dx = \begin{cases} 2\pi \ln a, & a \geq b > 0, \\ 2\pi \ln b, & b \geq a > 0. \end{cases}

0π/2ln(tanx)dx=0.\int_0^{\pi/2} \ln(\tan x) \, dx = 0.

0π/4ln(1+tanx)dx=π8ln2.\int_0^{\pi/4} \ln(1+\tan x) \, dx = \frac{\pi}{8} \ln 2.


4. Integrals with Algebraic Functions

01xα(1x)βdx=B(α+1,β+1)=Γ(α+1)Γ(β+1)Γ(α+β+2),\int_0^1 x^\alpha (1-x)^\beta \, dx = B(\alpha+1, \beta+1) = \frac{\Gamma(\alpha+1)\Gamma(\beta+1)}{\Gamma(\alpha+\beta+2)},

valid for α>1,β>1\alpha > -1, \beta > -1.

4.2 Integrals with Rational Functions

0dx(1+x)xa=πsin(πa),0<a<1.\int_0^\infty \frac{dx}{(1+x)x^a} = \frac{\pi}{\sin(\pi a)}, \quad 0 < a < 1.

0dx(1x)xa=πcot(πa),0<a<1.\int_0^\infty \frac{dx}{(1-x)x^a} = -\pi \cot(\pi a), \quad 0 < a < 1.

0xa11+xbdx=πbsin(πab),0<a<b.\int_0^\infty \frac{x^{a-1}}{1+x^b} \, dx = \frac{\pi}{b \sin\left(\frac{\pi a}{b}\right)}, \quad 0 < a < b.

01dx1xa=πΓ(1a)aΓ(1a+12).\int_0^1 \frac{dx}{\sqrt{1-x^a}} = \frac{\sqrt{\pi}\, \Gamma\left(\frac{1}{a}\right)}{a\, \Gamma\left(\frac{1}{a}+\frac{1}{2}\right)}.

01dx1+2xcosa+x2=a2sina,0<a<π.\int_0^1 \frac{dx}{1+2x\cos a + x^2} = \frac{a}{2\sin a}, \quad 0 < a < \pi.

0dx1+2xcosa+x2=asina,0<a<π.\int_0^\infty \frac{dx}{1+2x\cos a + x^2} = \frac{a}{\sin a}, \quad 0 < a < \pi.


Important Notes
  1. Special Functions:

    • Γ(x)\Gamma(x): Gamma function (Euler's integral of the second kind).
    • B(x,y)B(x,y): Beta function, B(x,y)=Γ(x)Γ(y)Γ(x+y)B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}.
    • K(k),E(k)K(k), E(k): Complete elliptic integrals of the first and second kind.
    • γ\gamma: Euler-Mascheroni constant (0.5772\approx 0.5772).
  2. Convergence Conditions: All formulas explicitly include the necessary conditions for the convergence of the integrals.

  3. Relations Between Integrals: Some integrals are related (for example, 25 to 9, 26 to 6, 27 to 7).

References: E. Goursat, Cours d'analyse mathématique, Vol. II; standard tables of special functions.