The derivative of a function measures the instantaneous rate of change of its variable. This table compiles the essential rules and formulas for differentiating elementary functions.
f f f , g g g , u u u , v v v : differentiable functions of x x x
c c c , a a a , b b b , n n n , k k k : real constants
f ′ ( x ) = d d x f ( x ) f'(x) = \frac{d}{dx}f(x) f ′ ( x ) = d x d f ( x ) : derivative of f f f with respect to x x x
It is assumed that functions are defined on domains where the derivatives exist
d d x [ a f ( x ) + b g ( x ) ] = a f ′ ( x ) + b g ′ ( x ) \frac{d}{dx}[af(x) + bg(x)] = a f'(x) + b g'(x)
d x d [ a f ( x ) + b g ( x )] = a f ′ ( x ) + b g ′ ( x )
where a a a and b b b are constants.
d d x ( c ) = 0 \frac{d}{dx}(c) = 0
d x d ( c ) = 0
For n ∈ R n \in \mathbb{R} n ∈ R :
d d x ( x n ) = n x n − 1 \frac{d}{dx}(x^n) = n x^{n-1}
d x d ( x n ) = n x n − 1
Generalized version (chain rule):
d d x ( u n ) = n u n − 1 d u d x \frac{d}{dx}(u^n) = n u^{n-1} \frac{du}{dx}
d x d ( u n ) = n u n − 1 d x d u
d d x [ f ( x ) g ( x ) ] = f ′ ( x ) g ( x ) + f ( x ) g ′ ( x ) \frac{d}{dx}[f(x)g(x)] = f'(x)g(x) + f(x)g'(x)
d x d [ f ( x ) g ( x )] = f ′ ( x ) g ( x ) + f ( x ) g ′ ( x )
d d x [ f ( x ) g ( x ) ] = f ′ ( x ) g ( x ) − f ( x ) g ′ ( x ) [ g ( x ) ] 2 , g ( x ) ≠ 0 \frac{d}{dx}\left[\frac{f(x)}{g(x)}\right] = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}, \quad g(x) \neq 0
d x d [ g ( x ) f ( x ) ] = [ g ( x ) ] 2 f ′ ( x ) g ( x ) − f ( x ) g ′ ( x ) , g ( x ) = 0
Special case:
d d x [ 1 f ( x ) ] = − f ′ ( x ) [ f ( x ) ] 2 , f ( x ) ≠ 0 \frac{d}{dx}\left[\frac{1}{f(x)}\right] = -\frac{f'(x)}{[f(x)]^2}, \quad f(x) \neq 0
d x d [ f ( x ) 1 ] = − [ f ( x ) ] 2 f ′ ( x ) , f ( x ) = 0
d d x f ( g ( x ) ) = f ′ ( g ( x ) ) ⋅ g ′ ( x ) \frac{d}{dx}f(g(x)) = f'(g(x)) \cdot g'(x)
d x d f ( g ( x )) = f ′ ( g ( x )) ⋅ g ′ ( x )
If y = f ( x ) y = f(x) y = f ( x ) has a differentiable inverse f − 1 f^{-1} f − 1 :
d d x f − 1 ( x ) = 1 f ′ ( f − 1 ( x ) ) \frac{d}{dx}f^{-1}(x) = \frac{1}{f'(f^{-1}(x))}
d x d f − 1 ( x ) = f ′ ( f − 1 ( x )) 1
d d x ( x ) = 1 d d x ( x ) = 1 2 x , x > 0 d d x ( x n ) = 1 n x n − 1 n , x ≠ 0 d d x ( 1 x ) = − 1 x 2 , x ≠ 0 d d x ( 1 x n ) = − n x n + 1 , x ≠ 0 \begin{aligned}
\frac{d}{dx}(x) &= 1 \\
\frac{d}{dx}(\sqrt{x}) &= \frac{1}{2\sqrt{x}}, \quad x > 0 \\
\frac{d}{dx}(\sqrt[n]{x}) &= \frac{1}{n\sqrt[n]{x^{n-1}}}, \quad x \neq 0 \\
\frac{d}{dx}\left(\frac{1}{x}\right) &= -\frac{1}{x^2}, \quad x \neq 0 \\
\frac{d}{dx}\left(\frac{1}{x^n}\right) &= -\frac{n}{x^{n+1}}, \quad x \neq 0
\end{aligned}
d x d ( x ) d x d ( x ) d x d ( n x ) d x d ( x 1 ) d x d ( x n 1 ) = 1 = 2 x 1 , x > 0 = n n x n − 1 1 , x = 0 = − x 2 1 , x = 0 = − x n + 1 n , x = 0
d d x ( ∣ x ∣ ) = sgn ( x ) , x ≠ 0 d d x ( sgn ( x ) ) = 0 , x ≠ 0 \begin{aligned}
\frac{d}{dx}(|x|) &= \operatorname{sgn}(x), \quad x \neq 0 \\
\frac{d}{dx}(\operatorname{sgn}(x)) &= 0, \quad x \neq 0
\end{aligned}
d x d ( ∣ x ∣ ) d x d ( sgn ( x )) = sgn ( x ) , x = 0 = 0 , x = 0
d d x ( e x ) = e x \frac{d}{dx}(e^x) = e^x
d x d ( e x ) = e x
For a > 0 a > 0 a > 0 , a ≠ 1 a \neq 1 a = 1 :
d d x ( a x ) = a x ln a \frac{d}{dx}(a^x) = a^x \ln a
d x d ( a x ) = a x ln a
d d x ( ln x ) = 1 x , x > 0 \frac{d}{dx}(\ln x) = \frac{1}{x}, \quad x > 0
d x d ( ln x ) = x 1 , x > 0
For a > 0 a > 0 a > 0 , a ≠ 1 a \neq 1 a = 1 :
d d x ( log a x ) = 1 x ln a , x > 0 \frac{d}{dx}(\log_a x) = \frac{1}{x \ln a}, \quad x > 0
d x d ( log a x ) = x ln a 1 , x > 0
For f ( x ) > 0 f(x) > 0 f ( x ) > 0 :
d d x [ f ( x ) g ( x ) ] = f ( x ) g ( x ) [ g ′ ( x ) ln f ( x ) + g ( x ) f ′ ( x ) f ( x ) ] \frac{d}{dx}[f(x)^{g(x)}] = f(x)^{g(x)} \left[ g'(x) \ln f(x) + g(x) \frac{f'(x)}{f(x)} \right]
d x d [ f ( x ) g ( x ) ] = f ( x ) g ( x ) [ g ′ ( x ) ln f ( x ) + g ( x ) f ( x ) f ′ ( x ) ]
d d x ( sin x ) = cos x d d x ( cos x ) = − sin x d d x ( tan x ) = sec 2 x = 1 + tan 2 x d d x ( cot x ) = − csc 2 x = − ( 1 + cot 2 x ) d d x ( sec x ) = sec x tan x d d x ( csc x ) = − csc x cot x \begin{aligned}
\frac{d}{dx}(\sin x) &= \cos x \\
\frac{d}{dx}(\cos x) &= -\sin x \\
\frac{d}{dx}(\tan x) &= \sec^2 x = 1 + \tan^2 x \\
\frac{d}{dx}(\cot x) &= -\csc^2 x = -(1 + \cot^2 x) \\
\frac{d}{dx}(\sec x) &= \sec x \tan x \\
\frac{d}{dx}(\csc x) &= -\csc x \cot x
\end{aligned}
d x d ( sin x ) d x d ( cos x ) d x d ( tan x ) d x d ( cot x ) d x d ( sec x ) d x d ( csc x ) = cos x = − sin x = sec 2 x = 1 + tan 2 x = − csc 2 x = − ( 1 + cot 2 x ) = sec x tan x = − csc x cot x
d d x ( arcsin x ) = 1 1 − x 2 , ∣ x ∣ < 1 d d x ( arccos x ) = − 1 1 − x 2 , ∣ x ∣ < 1 d d x ( arctan x ) = 1 1 + x 2 d d x ( arccot x ) = − 1 1 + x 2 d d x ( arcsec x ) = 1 ∣ x ∣ x 2 − 1 , ∣ x ∣ > 1 d d x ( arccsc x ) = − 1 ∣ x ∣ x 2 − 1 , ∣ x ∣ > 1 \begin{aligned}
\frac{d}{dx}(\arcsin x) &= \frac{1}{\sqrt{1 - x^2}}, \quad |x| < 1 \\
\frac{d}{dx}(\arccos x) &= -\frac{1}{\sqrt{1 - x^2}}, \quad |x| < 1 \\
\frac{d}{dx}(\arctan x) &= \frac{1}{1 + x^2} \\
\frac{d}{dx}(\operatorname{arccot} x) &= -\frac{1}{1 + x^2} \\
\frac{d}{dx}(\operatorname{arcsec} x) &= \frac{1}{|x|\sqrt{x^2 - 1}}, \quad |x| > 1 \\
\frac{d}{dx}(\operatorname{arccsc} x) &= -\frac{1}{|x|\sqrt{x^2 - 1}}, \quad |x| > 1
\end{aligned}
d x d ( arcsin x ) d x d ( arccos x ) d x d ( arctan x ) d x d ( arccot x ) d x d ( arcsec x ) d x d ( arccsc x ) = 1 − x 2 1 , ∣ x ∣ < 1 = − 1 − x 2 1 , ∣ x ∣ < 1 = 1 + x 2 1 = − 1 + x 2 1 = ∣ x ∣ x 2 − 1 1 , ∣ x ∣ > 1 = − ∣ x ∣ x 2 − 1 1 , ∣ x ∣ > 1
d d x ( sinh x ) = cosh x d d x ( cosh x ) = sinh x d d x ( tanh x ) = sech 2 x = 1 − tanh 2 x d d x ( coth x ) = − csch 2 x = 1 − coth 2 x d d x ( sech x ) = − sech x tanh x d d x ( csch x ) = − csch x coth x \begin{aligned}
\frac{d}{dx}(\sinh x) &= \cosh x \\
\frac{d}{dx}(\cosh x) &= \sinh x \\
\frac{d}{dx}(\tanh x) &= \operatorname{sech}^2 x = 1 - \tanh^2 x \\
\frac{d}{dx}(\coth x) &= -\operatorname{csch}^2 x = 1 - \coth^2 x \\
\frac{d}{dx}(\operatorname{sech} x) &= -\operatorname{sech} x \tanh x \\
\frac{d}{dx}(\operatorname{csch} x) &= -\operatorname{csch} x \coth x
\end{aligned}
d x d ( sinh x ) d x d ( cosh x ) d x d ( tanh x ) d x d ( coth x ) d x d ( sech x ) d x d ( csch x ) = cosh x = sinh x = sech 2 x = 1 − tanh 2 x = − csch 2 x = 1 − coth 2 x = − sech x tanh x = − csch x coth x
d d x ( arsinh x ) = 1 x 2 + 1 d d x ( arcosh x ) = 1 x 2 − 1 , x > 1 d d x ( artanh x ) = 1 1 − x 2 , ∣ x ∣ < 1 d d x ( arcoth x ) = 1 1 − x 2 , ∣ x ∣ > 1 d d x ( arsech x ) = − 1 x 1 − x 2 , 0 < x < 1 d d x ( arcsch x ) = − 1 ∣ x ∣ 1 + x 2 , x ≠ 0 \begin{aligned}
\frac{d}{dx}(\operatorname{arsinh} x) &= \frac{1}{\sqrt{x^2 + 1}} \\
\frac{d}{dx}(\operatorname{arcosh} x) &= \frac{1}{\sqrt{x^2 - 1}}, \quad x > 1 \\
\frac{d}{dx}(\operatorname{artanh} x) &= \frac{1}{1 - x^2}, \quad |x| < 1 \\
\frac{d}{dx}(\operatorname{arcoth} x) &= \frac{1}{1 - x^2}, \quad |x| > 1 \\
\frac{d}{dx}(\operatorname{arsech} x) &= -\frac{1}{x\sqrt{1 - x^2}}, \quad 0 < x < 1 \\
\frac{d}{dx}(\operatorname{arcsch} x) &= -\frac{1}{|x|\sqrt{1 + x^2}}, \quad x \neq 0
\end{aligned}
d x d ( arsinh x ) d x d ( arcosh x ) d x d ( artanh x ) d x d ( arcoth x ) d x d ( arsech x ) d x d ( arcsch x ) = x 2 + 1 1 = x 2 − 1 1 , x > 1 = 1 − x 2 1 , ∣ x ∣ < 1 = 1 − x 2 1 , ∣ x ∣ > 1 = − x 1 − x 2 1 , 0 < x < 1 = − ∣ x ∣ 1 + x 2 1 , x = 0
d d x ∫ a ( x ) b ( x ) f ( x , t ) d t = f ( x , b ( x ) ) ⋅ b ′ ( x ) − f ( x , a ( x ) ) ⋅ a ′ ( x ) + ∫ a ( x ) b ( x ) ∂ f ∂ x ( x , t ) d t \frac{d}{dx} \int_{a(x)}^{b(x)} f(x,t)\,dt = f(x,b(x)) \cdot b'(x) - f(x,a(x)) \cdot a'(x) + \int_{a(x)}^{b(x)} \frac{\partial f}{\partial x}(x,t)\,dt
d x d ∫ a ( x ) b ( x ) f ( x , t ) d t = f ( x , b ( x )) ⋅ b ′ ( x ) − f ( x , a ( x )) ⋅ a ′ ( x ) + ∫ a ( x ) b ( x ) ∂ x ∂ f ( x , t ) d t
Constant limits:
d d x ∫ a b f ( x , t ) d t = ∫ a b ∂ f ∂ x ( x , t ) d t \frac{d}{dx} \int_a^b f(x,t)\,dt = \int_a^b \frac{\partial f}{\partial x}(x,t)\,dt
d x d ∫ a b f ( x , t ) d t = ∫ a b ∂ x ∂ f ( x , t ) d t
Variable upper limit:
d d x ∫ a g ( x ) f ( t ) d t = f ( g ( x ) ) ⋅ g ′ ( x ) \frac{d}{dx} \int_a^{g(x)} f(t)\,dt = f(g(x)) \cdot g'(x)
d x d ∫ a g ( x ) f ( t ) d t = f ( g ( x )) ⋅ g ′ ( x )
Variable lower limit:
d d x ∫ h ( x ) b f ( t ) d t = − f ( h ( x ) ) ⋅ h ′ ( x ) \frac{d}{dx} \int_{h(x)}^b f(t)\,dt = -f(h(x)) \cdot h'(x)
d x d ∫ h ( x ) b f ( t ) d t = − f ( h ( x )) ⋅ h ′ ( x )
d d x Γ ( x ) = Γ ( x ) ψ ( x ) \frac{d}{dx} \Gamma(x) = \Gamma(x) \psi(x)
d x d Γ ( x ) = Γ ( x ) ψ ( x )
where ψ ( x ) \psi(x) ψ ( x ) is the digamma function.
d d x [ x n J n ( x ) ] = x n J n − 1 ( x ) d d x [ x − n J n ( x ) ] = − x − n J n + 1 ( x ) \begin{aligned}
\frac{d}{dx}[x^n J_n(x)] &= x^n J_{n-1}(x) \\
\frac{d}{dx}[x^{-n} J_n(x)] &= -x^{-n} J_{n+1}(x)
\end{aligned}
d x d [ x n J n ( x )] d x d [ x − n J n ( x )] = x n J n − 1 ( x ) = − x − n J n + 1 ( x )