equationzone

Differential Calculus

Table of Derivatives

The derivative of a function measures the instantaneous rate of change of its variable. This table compiles the essential rules and formulas for differentiating elementary functions.

Notation Conventions:
  • ff, gg, uu, vv: differentiable functions of xx
  • cc, aa, bb, nn, kk: real constants
  • f(x)=ddxf(x)f'(x) = \frac{d}{dx}f(x): derivative of ff with respect to xx
  • It is assumed that functions are defined on domains where the derivatives exist

1. Fundamental Rules of Differentiation

ddx[af(x)+bg(x)]=af(x)+bg(x)\frac{d}{dx}[af(x) + bg(x)] = a f'(x) + b g'(x)

where aa and bb are constants.

ddx(c)=0\frac{d}{dx}(c) = 0

For nRn \in \mathbb{R}:

ddx(xn)=nxn1\frac{d}{dx}(x^n) = n x^{n-1}

Generalized version (chain rule):

ddx(un)=nun1dudx\frac{d}{dx}(u^n) = n u^{n-1} \frac{du}{dx}

ddx[f(x)g(x)]=f(x)g(x)+f(x)g(x)\frac{d}{dx}[f(x)g(x)] = f'(x)g(x) + f(x)g'(x)

ddx[f(x)g(x)]=f(x)g(x)f(x)g(x)[g(x)]2,g(x)0\frac{d}{dx}\left[\frac{f(x)}{g(x)}\right] = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}, \quad g(x) \neq 0

Special case:

ddx[1f(x)]=f(x)[f(x)]2,f(x)0\frac{d}{dx}\left[\frac{1}{f(x)}\right] = -\frac{f'(x)}{[f(x)]^2}, \quad f(x) \neq 0

ddxf(g(x))=f(g(x))g(x)\frac{d}{dx}f(g(x)) = f'(g(x)) \cdot g'(x)

1.7. Derivative of the inverse function

If y=f(x)y = f(x) has a differentiable inverse f1f^{-1}:

ddxf1(x)=1f(f1(x))\frac{d}{dx}f^{-1}(x) = \frac{1}{f'(f^{-1}(x))}


2. Derivatives of Algebraic Functions

2.1. Polynomial functions and radicals

ddx(x)=1ddx(x)=12x,x>0ddx(xn)=1nxn1n,x0ddx(1x)=1x2,x0ddx(1xn)=nxn+1,x0\begin{aligned} \frac{d}{dx}(x) &= 1 \\ \frac{d}{dx}(\sqrt{x}) &= \frac{1}{2\sqrt{x}}, \quad x > 0 \\ \frac{d}{dx}(\sqrt[n]{x}) &= \frac{1}{n\sqrt[n]{x^{n-1}}}, \quad x \neq 0 \\ \frac{d}{dx}\left(\frac{1}{x}\right) &= -\frac{1}{x^2}, \quad x \neq 0 \\ \frac{d}{dx}\left(\frac{1}{x^n}\right) &= -\frac{n}{x^{n+1}}, \quad x \neq 0 \end{aligned}

2.2. Absolute value and sign function

ddx(x)=sgn(x),x0ddx(sgn(x))=0,x0\begin{aligned} \frac{d}{dx}(|x|) &= \operatorname{sgn}(x), \quad x \neq 0 \\ \frac{d}{dx}(\operatorname{sgn}(x)) &= 0, \quad x \neq 0 \end{aligned}


3. Derivatives of Exponential and Logarithmic Functions

ddx(ex)=ex\frac{d}{dx}(e^x) = e^x

For a>0a > 0, a1a \neq 1:

ddx(ax)=axlna\frac{d}{dx}(a^x) = a^x \ln a

ddx(lnx)=1x,x>0\frac{d}{dx}(\ln x) = \frac{1}{x}, \quad x > 0

For a>0a > 0, a1a \neq 1:

ddx(logax)=1xlna,x>0\frac{d}{dx}(\log_a x) = \frac{1}{x \ln a}, \quad x > 0

For f(x)>0f(x) > 0:

ddx[f(x)g(x)]=f(x)g(x)[g(x)lnf(x)+g(x)f(x)f(x)]\frac{d}{dx}[f(x)^{g(x)}] = f(x)^{g(x)} \left[ g'(x) \ln f(x) + g(x) \frac{f'(x)}{f(x)} \right]


4. Derivatives of Trigonometric Functions

4.1. Basic trigonometric functions

ddx(sinx)=cosxddx(cosx)=sinxddx(tanx)=sec2x=1+tan2xddx(cotx)=csc2x=(1+cot2x)ddx(secx)=secxtanxddx(cscx)=cscxcotx\begin{aligned} \frac{d}{dx}(\sin x) &= \cos x \\ \frac{d}{dx}(\cos x) &= -\sin x \\ \frac{d}{dx}(\tan x) &= \sec^2 x = 1 + \tan^2 x \\ \frac{d}{dx}(\cot x) &= -\csc^2 x = -(1 + \cot^2 x) \\ \frac{d}{dx}(\sec x) &= \sec x \tan x \\ \frac{d}{dx}(\csc x) &= -\csc x \cot x \end{aligned}

4.2. Inverse trigonometric functions

ddx(arcsinx)=11x2,x<1ddx(arccosx)=11x2,x<1ddx(arctanx)=11+x2ddx(arccotx)=11+x2ddx(arcsecx)=1xx21,x>1ddx(arccscx)=1xx21,x>1\begin{aligned} \frac{d}{dx}(\arcsin x) &= \frac{1}{\sqrt{1 - x^2}}, \quad |x| < 1 \\ \frac{d}{dx}(\arccos x) &= -\frac{1}{\sqrt{1 - x^2}}, \quad |x| < 1 \\ \frac{d}{dx}(\arctan x) &= \frac{1}{1 + x^2} \\ \frac{d}{dx}(\operatorname{arccot} x) &= -\frac{1}{1 + x^2} \\ \frac{d}{dx}(\operatorname{arcsec} x) &= \frac{1}{|x|\sqrt{x^2 - 1}}, \quad |x| > 1 \\ \frac{d}{dx}(\operatorname{arccsc} x) &= -\frac{1}{|x|\sqrt{x^2 - 1}}, \quad |x| > 1 \end{aligned}


5. Derivatives of Hyperbolic Functions

ddx(sinhx)=coshxddx(coshx)=sinhxddx(tanhx)=sech2x=1tanh2xddx(cothx)=csch2x=1coth2xddx(sechx)=sechxtanhxddx(cschx)=cschxcothx\begin{aligned} \frac{d}{dx}(\sinh x) &= \cosh x \\ \frac{d}{dx}(\cosh x) &= \sinh x \\ \frac{d}{dx}(\tanh x) &= \operatorname{sech}^2 x = 1 - \tanh^2 x \\ \frac{d}{dx}(\coth x) &= -\operatorname{csch}^2 x = 1 - \coth^2 x \\ \frac{d}{dx}(\operatorname{sech} x) &= -\operatorname{sech} x \tanh x \\ \frac{d}{dx}(\operatorname{csch} x) &= -\operatorname{csch} x \coth x \end{aligned}

ddx(arsinhx)=1x2+1ddx(arcoshx)=1x21,x>1ddx(artanhx)=11x2,x<1ddx(arcothx)=11x2,x>1ddx(arsechx)=1x1x2,0<x<1ddx(arcschx)=1x1+x2,x0\begin{aligned} \frac{d}{dx}(\operatorname{arsinh} x) &= \frac{1}{\sqrt{x^2 + 1}} \\ \frac{d}{dx}(\operatorname{arcosh} x) &= \frac{1}{\sqrt{x^2 - 1}}, \quad x > 1 \\ \frac{d}{dx}(\operatorname{artanh} x) &= \frac{1}{1 - x^2}, \quad |x| < 1 \\ \frac{d}{dx}(\operatorname{arcoth} x) &= \frac{1}{1 - x^2}, \quad |x| > 1 \\ \frac{d}{dx}(\operatorname{arsech} x) &= -\frac{1}{x\sqrt{1 - x^2}}, \quad 0 < x < 1 \\ \frac{d}{dx}(\operatorname{arcsch} x) &= -\frac{1}{|x|\sqrt{1 + x^2}}, \quad x \neq 0 \end{aligned}


6. Differentiation of Integrals (Leibniz Rule)

ddxa(x)b(x)f(x,t)dt=f(x,b(x))b(x)f(x,a(x))a(x)+a(x)b(x)fx(x,t)dt\frac{d}{dx} \int_{a(x)}^{b(x)} f(x,t)\,dt = f(x,b(x)) \cdot b'(x) - f(x,a(x)) \cdot a'(x) + \int_{a(x)}^{b(x)} \frac{\partial f}{\partial x}(x,t)\,dt

  1. Constant limits:

    ddxabf(x,t)dt=abfx(x,t)dt\frac{d}{dx} \int_a^b f(x,t)\,dt = \int_a^b \frac{\partial f}{\partial x}(x,t)\,dt

  2. Variable upper limit:

    ddxag(x)f(t)dt=f(g(x))g(x)\frac{d}{dx} \int_a^{g(x)} f(t)\,dt = f(g(x)) \cdot g'(x)

  3. Variable lower limit:

    ddxh(x)bf(t)dt=f(h(x))h(x)\frac{d}{dx} \int_{h(x)}^b f(t)\,dt = -f(h(x)) \cdot h'(x)


7. Derivatives of Special Functions (Reference)

ddxΓ(x)=Γ(x)ψ(x)\frac{d}{dx} \Gamma(x) = \Gamma(x) \psi(x)

where ψ(x)\psi(x) is the digamma function.

ddx[xnJn(x)]=xnJn1(x)ddx[xnJn(x)]=xnJn+1(x)\begin{aligned} \frac{d}{dx}[x^n J_n(x)] &= x^n J_{n-1}(x) \\ \frac{d}{dx}[x^{-n} J_n(x)] &= -x^{-n} J_{n+1}(x) \end{aligned}