Comprehensive collection of integration formulas involving linear, quadratic, and polynomial expressions — perfect for university calculus students and researchers. Includes integrals of a x + b ax + b a x + b , a x 2 + b x + c ax^2 + bx + c a x 2 + b x + c , a n ± x n a^n \pm x^n a n ± x n , and more, with clear notation and reduction formulas.
We denote:
X = a x + b X = ax + b
X = a x + b
∫ X n d x = 1 a ( n + 1 ) X n + 1 ( n ≠ − 1 ) \displaystyle \int X^n \, dx = \frac{1}{a(n+1)} X^{n+1} \qquad (n \neq -1)
∫ X n d x = a ( n + 1 ) 1 X n + 1 ( n = − 1 )
(For n = − 1 n = -1 n = − 1 , see formula 2.)
∫ d x X = 1 a ln ∣ X ∣ \displaystyle \int \frac{dx}{X} = \frac{1}{a} \ln |X|
∫ X d x = a 1 ln ∣ X ∣
∫ x X n d x = 1 a 2 ( n + 2 ) X n + 2 − b a 2 ( n + 1 ) X n + 1 ( n ≠ − 1 , − 2 ) \displaystyle \int x X^n \, dx = \frac{1}{a^2(n+2)} X^{n+2} - \frac{b}{a^2(n+1)} X^{n+1} \qquad (n \neq -1, -2)
∫ x X n d x = a 2 ( n + 2 ) 1 X n + 2 − a 2 ( n + 1 ) b X n + 1 ( n = − 1 , − 2 )
(For n = − 1 , − 2 n = -1, -2 n = − 1 , − 2 , see formulas 5 and 6.)
∫ x m X n d x = 1 a m + 1 ∫ ( X − b ) m X n d X \displaystyle \int x^m X^n \, dx = \frac{1}{a^{m+1}} \int (X - b)^m X^n \, dX
∫ x m X n d x = a m + 1 1 ∫ ( X − b ) m X n d X
This substitution is useful when m m m is an integer or n n n is fractional. Expand ( X − b ) m (X - b)^m ( X − b ) m using the binomial theorem.
∫ x d x X = x a − b a 2 ln ∣ X ∣ \displaystyle \int \frac{x \, dx}{X} = \frac{x}{a} - \frac{b}{a^2} \ln |X|
∫ X x d x = a x − a 2 b ln ∣ X ∣
∫ x d x X 2 = b a 2 X + 1 a 2 ln ∣ X ∣ \displaystyle \int \frac{x \, dx}{X^2} = \frac{b}{a^2 X} + \frac{1}{a^2} \ln |X|
∫ X 2 x d x = a 2 X b + a 2 1 ln ∣ X ∣
∫ x d x X 3 = 1 a 2 ( − 1 X + b 2 X 2 ) \displaystyle \int \frac{x \, dx}{X^3} = \frac{1}{a^2} \left( -\frac{1}{X} + \frac{b}{2X^2} \right)
∫ X 3 x d x = a 2 1 ( − X 1 + 2 X 2 b )
∫ x d x X n = 1 a 2 ( − 1 ( n − 2 ) X n − 2 + b ( n − 1 ) X n − 1 ) ( n ≠ 1 , 2 ) \displaystyle \int \frac{x \, dx}{X^n} = \frac{1}{a^2} \left( \frac{-1}{(n-2)X^{n-2}} + \frac{b}{(n-1)X^{n-1}} \right) \qquad (n \neq 1, 2)
∫ X n x d x = a 2 1 ( ( n − 2 ) X n − 2 − 1 + ( n − 1 ) X n − 1 b ) ( n = 1 , 2 )
∫ x 2 d x X = 1 a 3 ( X 2 2 − 2 b X + b 2 ln ∣ X ∣ ) \displaystyle \int \frac{x^2 \, dx}{X} = \frac{1}{a^3} \left( \frac{X^2}{2} - 2bX + b^2 \ln |X| \right)
∫ X x 2 d x = a 3 1 ( 2 X 2 − 2 b X + b 2 ln ∣ X ∣ )
∫ x 2 d x X 2 = 1 a 3 ( X − 2 b ln ∣ X ∣ − b 2 X ) \displaystyle \int \frac{x^2 \, dx}{X^2} = \frac{1}{a^3} \left( X - 2b \ln |X| - \frac{b^2}{X} \right)
∫ X 2 x 2 d x = a 3 1 ( X − 2 b ln ∣ X ∣ − X b 2 )
∫ x 2 d x X 3 = 1 a 3 ( ln ∣ X ∣ + 2 b X − b 2 2 X 2 ) \displaystyle \int \frac{x^2 \, dx}{X^3} = \frac{1}{a^3} \left( \ln |X| + \frac{2b}{X} - \frac{b^2}{2X^2} \right)
∫ X 3 x 2 d x = a 3 1 ( ln ∣ X ∣ + X 2 b − 2 X 2 b 2 )
∫ x 2 d x X n = 1 a 3 [ − 1 ( n − 3 ) X n − 3 + 2 b ( n − 2 ) X n − 2 − b 2 ( n − 1 ) X n − 1 ] ( n ≠ 1 , 2 , 3 ) \displaystyle \int \frac{x^2 \, dx}{X^n} = \frac{1}{a^3} \left[ \frac{-1}{(n-3)X^{n-3}} + \frac{2b}{(n-2)X^{n-2}} - \frac{b^2}{(n-1)X^{n-1}} \right] \qquad (n \neq 1, 2, 3)
∫ X n x 2 d x = a 3 1 [ ( n − 3 ) X n − 3 − 1 + ( n − 2 ) X n − 2 2 b − ( n − 1 ) X n − 1 b 2 ] ( n = 1 , 2 , 3 )
∫ x 3 d x X = 1 a 4 ( X 3 3 − 3 b X 2 2 + 3 b 2 X − b 3 ln ∣ X ∣ ) \displaystyle \int \frac{x^3 \, dx}{X} = \frac{1}{a^4} \left( \frac{X^3}{3} - \frac{3bX^2}{2} + 3b^2 X - b^3 \ln |X| \right)
∫ X x 3 d x = a 4 1 ( 3 X 3 − 2 3 b X 2 + 3 b 2 X − b 3 ln ∣ X ∣ )
∫ x 3 d x X 2 = 1 a 4 ( X 2 2 − 3 b X + 3 b 2 ln ∣ X ∣ + b 3 X ) \displaystyle \int \frac{x^3 \, dx}{X^2} = \frac{1}{a^4} \left( \frac{X^2}{2} - 3bX + 3b^2 \ln |X| + \frac{b^3}{X} \right)
∫ X 2 x 3 d x = a 4 1 ( 2 X 2 − 3 b X + 3 b 2 ln ∣ X ∣ + X b 3 )
∫ x 3 d x X 3 = 1 a 4 ( X − 3 b ln ∣ X ∣ − 3 b 2 X + b 3 2 X 2 ) \displaystyle \int \frac{x^3 \, dx}{X^3} = \frac{1}{a^4} \left( X - 3b \ln |X| - \frac{3b^2}{X} + \frac{b^3}{2X^2} \right)
∫ X 3 x 3 d x = a 4 1 ( X − 3 b ln ∣ X ∣ − X 3 b 2 + 2 X 2 b 3 )
∫ x 3 d x X 4 = 1 a 4 ( ln ∣ X ∣ + 3 b X − 3 b 2 2 X 2 + b 3 3 X 3 ) \displaystyle \int \frac{x^3 \, dx}{X^4} = \frac{1}{a^4} \left( \ln |X| + \frac{3b}{X} - \frac{3b^2}{2X^2} + \frac{b^3}{3X^3} \right)
∫ X 4 x 3 d x = a 4 1 ( ln ∣ X ∣ + X 3 b − 2 X 2 3 b 2 + 3 X 3 b 3 )
∫ x 3 d x X n = 1 a 4 [ − 1 ( n − 4 ) X n − 4 + 3 b ( n − 3 ) X n − 3 − 3 b 2 ( n − 2 ) X n − 2 + b 3 ( n − 1 ) X n − 1 ] ( n ≠ 1 , 2 , 3 , 4 ) \displaystyle \int \frac{x^3 \, dx}{X^n} = \frac{1}{a^4} \left[ \frac{-1}{(n-4)X^{n-4}} + \frac{3b}{(n-3)X^{n-3}} - \frac{3b^2}{(n-2)X^{n-2}} + \frac{b^3}{(n-1)X^{n-1}} \right] \qquad (n \neq 1, 2, 3, 4)
∫ X n x 3 d x = a 4 1 [ ( n − 4 ) X n − 4 − 1 + ( n − 3 ) X n − 3 3 b − ( n − 2 ) X n − 2 3 b 2 + ( n − 1 ) X n − 1 b 3 ] ( n = 1 , 2 , 3 , 4 )
∫ d x x X = 1 b ln ∣ x X ∣ \displaystyle \int \frac{dx}{xX} = \frac{1}{b} \ln \left| \frac{x}{X} \right|
∫ x X d x = b 1 ln X x
1 b ln ∣ x ∣ − 1 b ln ∣ X ∣ = 1 b ln ∣ x X ∣ \frac{1}{b} \ln|x| - \frac{1}{b} \ln|X| = \frac{1}{b} \ln\left|\frac{x}{X}\right| b 1 ln ∣ x ∣ − b 1 ln ∣ X ∣ = b 1 ln X x , which is equivalent to − 1 b ln ∣ X x ∣ -\frac{1}{b} \ln\left|\frac{X}{x}\right| − b 1 ln x X
∫ d x x X 2 = 1 b 2 ( a b ln ∣ X x ∣ − a X ) \displaystyle \int \frac{dx}{xX^2} = \frac{1}{b^2} \left( \frac{a}{b} \ln \left| \frac{X}{x} \right| - \frac{a}{X} \right)
∫ x X 2 d x = b 2 1 ( b a ln x X − X a )
∫ d x x X 3 = 1 b 3 ( a 2 2 b 2 ln ∣ X x ∣ − a 2 2 X 2 − a b X ) \displaystyle \int \frac{dx}{xX^3} = \frac{1}{b^3} \left( \frac{a^2}{2b^2} \ln \left| \frac{X}{x} \right| - \frac{a^2}{2X^2} - \frac{a}{bX} \right)
∫ x X 3 d x = b 3 1 ( 2 b 2 a 2 ln x X − 2 X 2 a 2 − b X a )
∫ d x x X n = 1 b n [ 1 n − 1 ⋅ a X n − 1 − 1 b ln ∣ x X ∣ ] ( n ≥ 1 ) \displaystyle \int \frac{dx}{xX^n} = \frac{1}{b^n} \left[ \frac{1}{n-1} \cdot \frac{a}{X^{n-1}} - \frac{1}{b} \ln \left| \frac{x}{X} \right| \right] \quad (n \geq 1)
∫ x X n d x = b n 1 [ n − 1 1 ⋅ X n − 1 a − b 1 ln X x ] ( n ≥ 1 )
This is a simplified form; the general formula involving a summation is given below.
∫ d x x 2 X = − 1 b x − a b 2 ln ∣ X x ∣ \displaystyle \int \frac{dx}{x^2 X} = -\frac{1}{bx} - \frac{a}{b^2} \ln \left| \frac{X}{x} \right|
∫ x 2 X d x = − b x 1 − b 2 a ln x X
∫ d x x 2 X 2 = − 1 b 2 x + 2 a b 3 ln ∣ X x ∣ − a b 2 X \displaystyle \int \frac{dx}{x^2 X^2} = -\frac{1}{b^2 x} + \frac{2a}{b^3} \ln \left| \frac{X}{x} \right| - \frac{a}{b^2 X}
∫ x 2 X 2 d x = − b 2 x 1 + b 3 2 a ln x X − b 2 X a
∫ d x x 2 X 3 = − 1 b 3 x + 3 a b 4 ln ∣ X x ∣ − 3 a 2 b 3 X 2 − 2 a b 3 X \displaystyle \int \frac{dx}{x^2 X^3} = -\frac{1}{b^3 x} + \frac{3a}{b^4} \ln \left| \frac{X}{x} \right| - \frac{3a}{2b^3 X^2} - \frac{2a}{b^3 X}
∫ x 2 X 3 d x = − b 3 x 1 + b 4 3 a ln x X − 2 b 3 X 2 3 a − b 3 X 2 a
∫ d x x 3 X = − 1 2 b x 2 + a b 2 x + a 2 b 3 ln ∣ x X ∣ \displaystyle \int \frac{dx}{x^3 X} = -\frac{1}{2b x^2} + \frac{a}{b^2 x} + \frac{a^2}{b^3} \ln \left| \frac{x}{X} \right|
∫ x 3 X d x = − 2 b x 2 1 + b 2 x a + b 3 a 2 ln X x
∫ d x x 3 X 2 = − 1 2 b 2 x 2 + 2 a b 3 x − 3 a 2 b 4 ln ∣ x X ∣ + a 2 b 3 X \displaystyle \int \frac{dx}{x^3 X^2} = -\frac{1}{2b^2 x^2} + \frac{2a}{b^3 x} - \frac{3a^2}{b^4} \ln \left| \frac{x}{X} \right| + \frac{a^2}{b^3 X}
∫ x 3 X 2 d x = − 2 b 2 x 2 1 + b 3 x 2 a − b 4 3 a 2 ln X x + b 3 X a 2
∫ d x x 3 X 3 = − 1 2 b 3 x 2 + 3 a b 4 x − 6 a 2 b 5 ln ∣ x X ∣ + 4 a 2 b 4 X − a 2 2 b 3 X 2 \displaystyle \int \frac{dx}{x^3 X^3} = -\frac{1}{2b^3 x^2} + \frac{3a}{b^4 x} - \frac{6a^2}{b^5} \ln \left| \frac{x}{X} \right| + \frac{4a^2}{b^4 X} - \frac{a^2}{2b^3 X^2}
∫ x 3 X 3 d x = − 2 b 3 x 2 1 + b 4 x 3 a − b 5 6 a 2 ln X x + b 4 X 4 a 2 − 2 b 3 X 2 a 2
The general formula is complex. For particular cases, it is advisable to use the substitution u = x X u = \frac{x}{X} u = X x or partial fraction decomposition .
A closed-form expression is:
∫ d x x m X n = − 1 ( m − 1 ) b x m − 1 − ( m + n − 2 ) a ( m − 1 ) b ∫ d x x m − 1 X n ( m > 1 ) \displaystyle \int \frac{dx}{x^m X^n} = -\frac{1}{(m-1)b x^{m-1}} - \frac{(m+n-2)a}{(m-1)b} \int \frac{dx}{x^{m-1} X^n} \quad (m > 1)
∫ x m X n d x = − ( m − 1 ) b x m − 1 1 − ( m − 1 ) b ( m + n − 2 ) a ∫ x m − 1 X n d x ( m > 1 )
For the integral with m = 1 m=1 m = 1 , we have:
∫ d x x X n = 1 b n [ a n − 1 ⋅ 1 X n − 1 + ln ∣ x X ∣ ] ( n ≠ 1 ) \displaystyle \int \frac{dx}{x X^n} = \frac{1}{b^n} \left[ \frac{a}{n-1} \cdot \frac{1}{X^{n-1}} + \ln \left| \frac{x}{X} \right| \right] \quad (n \neq 1)
∫ x X n d x = b n 1 [ n − 1 a ⋅ X n − 1 1 + ln X x ] ( n = 1 )
For formulas 31–34 , define:
Δ = b f − a g \Delta = bf - ag
Δ = b f − a g
∫ a x + b f x + g d x = a f x + Δ f 2 ln ∣ f x + g ∣ \displaystyle \int \frac{ax + b}{fx + g} \, dx = \frac{a}{f}x + \frac{\Delta}{f^2} \ln |fx + g|
∫ f x + g a x + b d x = f a x + f 2 Δ ln ∣ f x + g ∣
∫ d x ( a x + b ) ( f x + g ) = 1 Δ ln ∣ f x + g a x + b ∣ ( Δ ≠ 0 ) \displaystyle \int \frac{dx}{(ax + b)(fx + g)} = \frac{1}{\Delta} \ln \left| \frac{fx + g}{ax + b} \right| \qquad (\Delta \neq 0)
∫ ( a x + b ) ( f x + g ) d x = Δ 1 ln a x + b f x + g ( Δ = 0 )
∫ x d x ( a x + b ) ( f x + g ) = 1 Δ ( b a ln ∣ a x + b ∣ − g f ln ∣ f x + g ∣ ) ( Δ ≠ 0 ) \displaystyle \int \frac{x \, dx}{(ax + b)(fx + g)} = \frac{1}{\Delta} \left( \frac{b}{a} \ln |ax + b| - \frac{g}{f} \ln |fx + g| \right) \qquad (\Delta \neq 0)
∫ ( a x + b ) ( f x + g ) x d x = Δ 1 ( a b ln ∣ a x + b ∣ − f g ln ∣ f x + g ∣ ) ( Δ = 0 )
∫ d x ( a x + b ) 2 ( f x + g ) = 1 Δ ( 1 a x + b + f Δ ln ∣ f x + g a x + b ∣ ) ( Δ ≠ 0 ) \displaystyle \int \frac{dx}{(ax + b)^2 (fx + g)} = \frac{1}{\Delta} \left( \frac{1}{ax + b} + \frac{f}{\Delta} \ln \left| \frac{fx + g}{ax + b} \right| \right) \qquad (\Delta \neq 0)
∫ ( a x + b ) 2 ( f x + g ) d x = Δ 1 ( a x + b 1 + Δ f ln a x + b f x + g ) ( Δ = 0 )
For formulas 35–39 , denominators involve ( a + x ) (a+x) ( a + x ) and ( b + x ) (b+x) ( b + x ) , with a ≠ b a \neq b a = b .
∫ x d x ( a + x ) ( b + x ) 2 = b ( a − b ) ( b + x ) + a ( a − b ) 2 ln ∣ b + x a + x ∣ \displaystyle \int \frac{x \, dx}{(a + x)(b + x)^2} = \frac{b}{(a - b)(b + x)} + \frac{a}{(a - b)^2} \ln \left| \frac{b + x}{a + x} \right|
∫ ( a + x ) ( b + x ) 2 x d x = ( a − b ) ( b + x ) b + ( a − b ) 2 a ln a + x b + x
∫ x 2 d x ( a + x ) ( b + x ) 2 = b 2 ( a − b ) ( b + x ) + a 2 ( a − b ) 2 ln ∣ a + x ∣ + b ( b − 2 a ) ( a − b ) 2 ln ∣ b + x ∣ \displaystyle \int \frac{x^2 \, dx}{(a + x)(b + x)^2} = \frac{b^2}{(a - b)(b + x)} + \frac{a^2}{(a - b)^2} \ln |a + x| + \frac{b(b - 2a)}{(a - b)^2} \ln |b + x|
∫ ( a + x ) ( b + x ) 2 x 2 d x = ( a − b ) ( b + x ) b 2 + ( a − b ) 2 a 2 ln ∣ a + x ∣ + ( a − b ) 2 b ( b − 2 a ) ln ∣ b + x ∣
∫ d x ( a + x ) 2 ( b + x ) 2 = − 1 ( a − b ) 2 ( 1 a + x + 1 b + x ) + 2 ( a − b ) 3 ln ∣ a + x b + x ∣ \displaystyle \int \frac{dx}{(a + x)^2 (b + x)^2} = -\frac{1}{(a - b)^2} \left( \frac{1}{a + x} + \frac{1}{b + x} \right) + \frac{2}{(a - b)^3} \ln \left| \frac{a + x}{b + x} \right|
∫ ( a + x ) 2 ( b + x ) 2 d x = − ( a − b ) 2 1 ( a + x 1 + b + x 1 ) + ( a − b ) 3 2 ln b + x a + x
∫ x d x ( a + x ) 2 ( b + x ) 2 = 1 ( a − b ) 2 ( a a + x + b b + x ) − a + b ( a − b ) 3 ln ∣ a + x b + x ∣ \displaystyle \int \frac{x \, dx}{(a + x)^2 (b + x)^2} = \frac{1}{(a - b)^2} \left( \frac{a}{a + x} + \frac{b}{b + x} \right) - \frac{a + b}{(a - b)^3} \ln \left| \frac{a + x}{b + x} \right|
∫ ( a + x ) 2 ( b + x ) 2 x d x = ( a − b ) 2 1 ( a + x a + b + x b ) − ( a − b ) 3 a + b ln b + x a + x
∫ x 2 d x ( a + x ) 2 ( b + x ) 2 = − 1 ( a − b ) 2 ( a 2 a + x + b 2 b + x ) + 2 a b ( a − b ) 3 ln ∣ a + x b + x ∣ \displaystyle \int \frac{x^2 \, dx}{(a + x)^2 (b + x)^2} = -\frac{1}{(a - b)^2} \left( \frac{a^2}{a + x} + \frac{b^2}{b + x} \right) + \frac{2ab}{(a - b)^3} \ln \left| \frac{a + x}{b + x} \right|
∫ ( a + x ) 2 ( b + x ) 2 x 2 d x = − ( a − b ) 2 1 ( a + x a 2 + b + x b 2 ) + ( a − b ) 3 2 ab ln b + x a + x
X = a x 2 + b x + c , Δ = 4 a c − b 2 X = ax^2 + bx + c, \qquad \Delta = 4ac - b^2
X = a x 2 + b x + c , Δ = 4 a c − b 2
∫ d x X = { 2 Δ arctan ( 2 a x + b Δ ) , Δ > 0 , 1 − Δ ln ∣ 2 a x + b − − Δ 2 a x + b + − Δ ∣ , Δ < 0. \int \frac{dx}{X} =
\begin{cases}
\displaystyle \frac{2}{\sqrt{\Delta}} \arctan\left( \frac{2ax + b}{\sqrt{\Delta}} \right), & \Delta > 0, \\[2ex]
\displaystyle \frac{1}{\sqrt{-\Delta}} \ln \left| \frac{2ax + b - \sqrt{-\Delta}}{2ax + b + \sqrt{-\Delta}} \right|, & \Delta < 0.
\end{cases}
∫ X d x = ⎩ ⎨ ⎧ Δ 2 arctan ( Δ 2 a x + b ) , − Δ 1 ln 2 a x + b + − Δ 2 a x + b − − Δ , Δ > 0 , Δ < 0.
∫ d x X 2 = 2 a x + b Δ X + 4 a Δ ∫ d x X . \int \frac{dx}{X^2} = \frac{2ax + b}{\Delta \, X} + \frac{4a}{\Delta} \int \frac{dx}{X}.
∫ X 2 d x = Δ X 2 a x + b + Δ 4 a ∫ X d x .
∫ d x X 3 = 2 a x + b Δ ( 1 2 X 2 + 3 a Δ X ) + 12 a 2 Δ 2 ∫ d x X . \int \frac{dx}{X^3} = \frac{2ax + b}{\Delta} \left( \frac{1}{2X^2} + \frac{3a}{\Delta \, X} \right) + \frac{12a^2}{\Delta^2} \int \frac{dx}{X}.
∫ X 3 d x = Δ 2 a x + b ( 2 X 2 1 + Δ X 3 a ) + Δ 2 12 a 2 ∫ X d x .
Reduction formula:
∫ d x X n + 1 = 2 a x + b n Δ X n + 2 ( 2 n − 1 ) a n Δ ∫ d x X n , n ≥ 1. \int \frac{dx}{X^{n+1}} = \frac{2ax + b}{n \Delta \, X^n} + \frac{2(2n-1)a}{n \Delta} \int \frac{dx}{X^n}, \qquad n \ge 1.
∫ X n + 1 d x = n Δ X n 2 a x + b + n Δ 2 ( 2 n − 1 ) a ∫ X n d x , n ≥ 1.
∫ x d x X = 1 2 a ln ∣ X ∣ − b 2 a ∫ d x X . \int \frac{x \, dx}{X} = \frac{1}{2a} \ln|X| - \frac{b}{2a} \int \frac{dx}{X}.
∫ X x d x = 2 a 1 ln ∣ X ∣ − 2 a b ∫ X d x .
∫ x d x X 2 = − b x + 2 c Δ X − 2 b Δ ∫ d x X . \int \frac{x \, dx}{X^2} = -\frac{bx + 2c}{\Delta \, X} - \frac{2b}{\Delta} \int \frac{dx}{X}.
∫ X 2 x d x = − Δ X b x + 2 c − Δ 2 b ∫ X d x .
∫ x d x X n + 1 = − b x + 2 c n Δ X n − ( 2 n − 1 ) b n Δ ∫ d x X n , n ≥ 1. \int \frac{x \, dx}{X^{n+1}} = -\frac{bx + 2c}{n \Delta \, X^n} - \frac{(2n-1)b}{n \Delta} \int \frac{dx}{X^n}, \qquad n \ge 1.
∫ X n + 1 x d x = − n Δ X n b x + 2 c − n Δ ( 2 n − 1 ) b ∫ X n d x , n ≥ 1.
∫ x 2 d x X = x a − b 2 a 2 ln ∣ X ∣ + b 2 − 2 a c 2 a 2 ∫ d x X . \int \frac{x^2 \, dx}{X} = \frac{x}{a} - \frac{b}{2a^2} \ln|X| + \frac{b^2 - 2ac}{2a^2} \int \frac{dx}{X}.
∫ X x 2 d x = a x − 2 a 2 b ln ∣ X ∣ + 2 a 2 b 2 − 2 a c ∫ X d x .
∫ x 2 d x X 2 = ( b 2 − 2 a c ) x + b c a Δ X + 4 c Δ ∫ d x X . \int \frac{x^2 \, dx}{X^2} = \frac{(b^2 - 2ac)x + bc}{a \Delta \, X} + \frac{4c}{\Delta} \int \frac{dx}{X}.
∫ X 2 x 2 d x = a Δ X ( b 2 − 2 a c ) x + b c + Δ 4 c ∫ X d x .
Case m = 2 m = 2 m = 2 :
∫ x 2 d x X n + 1 = − x ( 2 n − 1 ) a X n + c ( 2 n − 1 ) a ∫ d x X n + 1 − ( n − 1 ) b ( 2 n − 1 ) a ∫ x d x X n + 1 . \int \frac{x^2 \, dx}{X^{n+1}} = -\frac{x}{(2n-1)a \, X^n} + \frac{c}{(2n-1)a} \int \frac{dx}{X^{n+1}} - \frac{(n-1)b}{(2n-1)a} \int \frac{x \, dx}{X^{n+1}}.
∫ X n + 1 x 2 d x = − ( 2 n − 1 ) a X n x + ( 2 n − 1 ) a c ∫ X n + 1 d x − ( 2 n − 1 ) a ( n − 1 ) b ∫ X n + 1 x d x .
General case m < 2 n m < 2n m < 2 n :
∫ x m d x X n + 1 = − x m − 1 ( 2 n − m + 1 ) a X n + ( m − 1 ) c ( 2 n − m + 1 ) a ∫ x m − 2 d x X n + 1 − ( n − m + 1 ) b ( 2 n − m + 1 ) a ∫ x m − 1 d x X n + 1 . \int \frac{x^m \, dx}{X^{n+1}} = -\frac{x^{m-1}}{(2n-m+1)a \, X^n} + \frac{(m-1)c}{(2n-m+1)a} \int \frac{x^{m-2} \, dx}{X^{n+1}} - \frac{(n-m+1)b}{(2n-m+1)a} \int \frac{x^{m-1} \, dx}{X^{n+1}}.
∫ X n + 1 x m d x = − ( 2 n − m + 1 ) a X n x m − 1 + ( 2 n − m + 1 ) a ( m − 1 ) c ∫ X n + 1 x m − 2 d x − ( 2 n − m + 1 ) a ( n − m + 1 ) b ∫ X n + 1 x m − 1 d x .
Case m = 2 n m = 2n m = 2 n :
∫ x 2 n − 1 d x X n = 1 a ∫ x 2 n − 3 d x X n − 1 − c a ∫ x 2 n − 3 d x X n − b a ∫ x 2 n − 2 d x X n . \int \frac{x^{2n-1} \, dx}{X^n} = \frac{1}{a} \int \frac{x^{2n-3} \, dx}{X^{n-1}} - \frac{c}{a} \int \frac{x^{2n-3} \, dx}{X^n} - \frac{b}{a} \int \frac{x^{2n-2} \, dx}{X^n}.
∫ X n x 2 n − 1 d x = a 1 ∫ X n − 1 x 2 n − 3 d x − a c ∫ X n x 2 n − 3 d x − a b ∫ X n x 2 n − 2 d x .
∫ d x x X = 1 2 c ln ∣ x 2 X ∣ − b 2 c ∫ d x X . \int \frac{dx}{x \, X} = \frac{1}{2c} \ln\left| \frac{x^2}{X} \right| - \frac{b}{2c} \int \frac{dx}{X}.
∫ x X d x = 2 c 1 ln X x 2 − 2 c b ∫ X d x .
∫ d x x X n + 1 = 1 2 c n X n − b 2 c ∫ d x X n + 1 + 1 c ∫ d x x X n , n ≥ 1. \int \frac{dx}{x \, X^{n+1}} = \frac{1}{2c n \, X^n} - \frac{b}{2c} \int \frac{dx}{X^{n+1}} + \frac{1}{c} \int \frac{dx}{x \, X^n}, \qquad n \ge 1.
∫ x X n + 1 d x = 2 c n X n 1 − 2 c b ∫ X n + 1 d x + c 1 ∫ x X n d x , n ≥ 1.
∫ d x x 2 X = − 1 c x + b 2 c 2 ln ∣ x 2 X ∣ + ( b 2 2 c 2 − a c ) ∫ d x X . \int \frac{dx}{x^2 \, X} = -\frac{1}{c x} + \frac{b}{2c^2} \ln\left| \frac{x^2}{X} \right| + \left( \frac{b^2}{2c^2} - \frac{a}{c} \right) \int \frac{dx}{X}.
∫ x 2 X d x = − c x 1 + 2 c 2 b ln X x 2 + ( 2 c 2 b 2 − c a ) ∫ X d x .
Reduction formula:
∫ d x x m X n + 1 = − 1 ( m − 1 ) c x m − 1 X n − ( 2 n + m − 1 ) a ( m − 1 ) c ∫ d x x m − 2 X n + 1 − ( n + m − 1 ) b ( m − 1 ) c ∫ d x x m − 1 X n + 1 , m > 1. \int \frac{dx}{x^{m} \, X^{n+1}} = -\frac{1}{(m-1)c \, x^{m-1} X^n} - \frac{(2n+m-1)a}{(m-1)c} \int \frac{dx}{x^{m-2} \, X^{n+1}} - \frac{(n+m-1)b}{(m-1)c} \int \frac{dx}{x^{m-1} \, X^{n+1}}, \quad m > 1.
∫ x m X n + 1 d x = − ( m − 1 ) c x m − 1 X n 1 − ( m − 1 ) c ( 2 n + m − 1 ) a ∫ x m − 2 X n + 1 d x − ( m − 1 ) c ( n + m − 1 ) b ∫ x m − 1 X n + 1 d x , m > 1.
∫ d x ( f x + g ) X = 1 2 ( c f 2 − b f g + a g 2 ) [ f ln ∣ ( f x + g ) 2 X ∣ + 2 a g − b f Δ F ( X ) ] , \int \frac{dx}{(fx + g) X} = \frac{1}{2(cf^2 - bfg + ag^2)} \left[ f \ln\left| \frac{(fx + g)^2}{X} \right| + \frac{2ag - bf}{\sqrt{\Delta}} \, F(X) \right],
∫ ( f x + g ) X d x = 2 ( c f 2 − b f g + a g 2 ) 1 [ f ln X ( f x + g ) 2 + Δ 2 a g − b f F ( X ) ] ,
where
F ( X ) = arctan ( 2 a x + b Δ ) F(X) = \arctan\left( \frac{2ax+b}{\sqrt{\Delta}} \right) F ( X ) = arctan ( Δ 2 a x + b ) if Δ > 0 \Delta > 0 Δ > 0 , or
1 − Δ ln ∣ 2 a x + b − − Δ 2 a x + b + − Δ ∣ \displaystyle \frac{1}{\sqrt{-\Delta}} \ln \left| \frac{2ax+b-\sqrt{-\Delta}}{2ax+b+\sqrt{-\Delta}} \right| − Δ 1 ln 2 a x + b + − Δ 2 a x + b − − Δ if Δ < 0 \Delta < 0 Δ < 0 .
Let X = a 2 ± x 2 X = a^2 \pm x^2 X = a 2 ± x 2 , with a > 0 a > 0 a > 0 . Define Y Y Y as:
Y = { arctan ( x a ) for X = a 2 + x 2 , arctanh ( x a ) = 1 2 ln ( a + x a − x ) for X = a 2 − x 2 if ∣ x ∣ < a , arccoth ( x a ) = 1 2 ln ( x + a x − a ) for X = a 2 − x 2 if ∣ x ∣ > a . Y =
\begin{cases}
\displaystyle \arctan \left( \frac{x}{a} \right) & \text{for } X = a^2 + x^2, \\[2ex]
\displaystyle \operatorname{arctanh} \left( \frac{x}{a} \right) = \frac{1}{2} \ln \left( \frac{a + x}{a - x} \right) & \text{for } X = a^2 - x^2 \text{ if } |x| < a, \\[2ex]
\displaystyle \operatorname{arccoth} \left( \frac{x}{a} \right) = \frac{1}{2} \ln \left( \frac{x + a}{x - a} \right) & \text{for } X = a^2 - x^2 \text{ if } |x| > a.
\end{cases}
Y = ⎩ ⎨ ⎧ arctan ( a x ) arctanh ( a x ) = 2 1 ln ( a − x a + x ) arccoth ( a x ) = 2 1 ln ( x − a x + a ) for X = a 2 + x 2 , for X = a 2 − x 2 if ∣ x ∣ < a , for X = a 2 − x 2 if ∣ x ∣ > a .
In all formulas that follow, the upper sign (± or ∓) corresponds to the case X = a 2 + x 2 X = a^2 + x^2 X = a 2 + x 2 , and the lower sign to the case X = a 2 − x 2 X = a^2 - x^2 X = a 2 − x 2 .
∫ d x X = 1 a Y \displaystyle \int \frac{dx}{X} = \frac{1}{a} \, Y
∫ X d x = a 1 Y
∫ d x X 2 = x 2 a 2 X + 1 2 a 3 Y \displaystyle \int \frac{dx}{X^2} = \frac{x}{2a^2 X} + \frac{1}{2a^3} \, Y
∫ X 2 d x = 2 a 2 X x + 2 a 3 1 Y
∫ d x X 3 = x 4 a 2 X 2 + 3 x 8 a 4 X + 3 8 a 5 Y \displaystyle \int \frac{dx}{X^3} = \frac{x}{4a^2 X^2} + \frac{3x}{8a^4 X} + \frac{3}{8a^5} \, Y
∫ X 3 d x = 4 a 2 X 2 x + 8 a 4 X 3 x + 8 a 5 3 Y
∫ d x X n + 1 = x 2 n a 2 X n + 2 n − 1 2 n a 2 ∫ d x X n ( n ≥ 1 ) \displaystyle \int \frac{dx}{X^{n+1}} = \frac{x}{2n a^2 X^n} + \frac{2n - 1}{2n a^2} \int \frac{dx}{X^n} \quad (n \ge 1)
∫ X n + 1 d x = 2 n a 2 X n x + 2 n a 2 2 n − 1 ∫ X n d x ( n ≥ 1 )
∫ x d x X = ± 1 2 ln ∣ X ∣ \displaystyle \int \frac{x \, dx}{X} = \pm \frac{1}{2} \ln |X|
∫ X x d x = ± 2 1 ln ∣ X ∣
∫ x d x X 2 = ∓ 1 2 X \displaystyle \int \frac{x \, dx}{X^2} = \mp \frac{1}{2X}
∫ X 2 x d x = ∓ 2 X 1
∫ x d x X 3 = ∓ 1 4 X 2 \displaystyle \int \frac{x \, dx}{X^3} = \mp \frac{1}{4X^2}
∫ X 3 x d x = ∓ 4 X 2 1
∫ x d x X n + 1 = ∓ 1 2 n X n ( n ≥ 1 ) \displaystyle \int \frac{x \, dx}{X^{n+1}} = \mp \frac{1}{2n X^n} \quad (n \ge 1)
∫ X n + 1 x d x = ∓ 2 n X n 1 ( n ≥ 1 )
∫ x 2 d x X = ± x ∓ a Y \displaystyle \int \frac{x^2 \, dx}{X} = \pm x \mp a \, Y
∫ X x 2 d x = ± x ∓ a Y
∫ x 2 d x X 2 = ∓ x 2 X ± 1 2 a Y \displaystyle \int \frac{x^2 \, dx}{X^2} = \mp \frac{x}{2X} \pm \frac{1}{2a} \, Y
∫ X 2 x 2 d x = ∓ 2 X x ± 2 a 1 Y
∫ x 2 d x X 3 = ∓ x 4 X 2 ∓ 1 8 a 2 ⋅ x X ± 1 8 a 3 Y \displaystyle \int \frac{x^2 \, dx}{X^3} = \mp \frac{x}{4X^2} \mp \frac{1}{8a^2} \cdot \frac{x}{X} \pm \frac{1}{8a^3} \, Y
∫ X 3 x 2 d x = ∓ 4 X 2 x ∓ 8 a 2 1 ⋅ X x ± 8 a 3 1 Y
∫ x 2 d x X n + 1 = ∓ x 2 n X n ± 1 2 n ∫ d x X n ( n ≥ 1 ) \displaystyle \int \frac{x^2 \, dx}{X^{n+1}} = \mp \frac{x}{2n X^n} \pm \frac{1}{2n} \int \frac{dx}{X^n} \quad (n \ge 1)
∫ X n + 1 x 2 d x = ∓ 2 n X n x ± 2 n 1 ∫ X n d x ( n ≥ 1 )
∫ x 3 d x X = ± x 2 2 − a 2 2 ln ∣ X ∣ \displaystyle \int \frac{x^3 \, dx}{X} = \pm \frac{x^2}{2} - \frac{a^2}{2} \ln |X|
∫ X x 3 d x = ± 2 x 2 − 2 a 2 ln ∣ X ∣
∫ x 3 d x X 2 = a 2 2 X + 1 2 ln ∣ X ∣ \displaystyle \int \frac{x^3 \, dx}{X^2} = \frac{a^2}{2X} + \frac{1}{2} \ln |X|
∫ X 2 x 3 d x = 2 X a 2 + 2 1 ln ∣ X ∣
∫ x 3 d x X 3 = − 1 2 X + a 2 4 X 2 \displaystyle \int \frac{x^3 \, dx}{X^3} = -\frac{1}{2X} + \frac{a^2}{4X^2}
∫ X 3 x 3 d x = − 2 X 1 + 4 X 2 a 2
∫ x 3 d x X n + 1 = − 1 2 ( n − 1 ) X n − 1 + a 2 2 n X n ( n > 1 ) \displaystyle \int \frac{x^3 \, dx}{X^{n+1}} = -\frac{1}{2(n-1) X^{n-1}} + \frac{a^2}{2n X^n} \quad (n > 1)
∫ X n + 1 x 3 d x = − 2 ( n − 1 ) X n − 1 1 + 2 n X n a 2 ( n > 1 )
∫ d x x X = 1 2 a 2 ln ∣ x 2 X ∣ \displaystyle \int \frac{dx}{x X} = \frac{1}{2a^2} \ln \left| \frac{x^2}{X} \right|
∫ x X d x = 2 a 2 1 ln X x 2
∫ d x x X 2 = 1 2 a 2 X + 1 2 a 4 ln ∣ x 2 X ∣ \displaystyle \int \frac{dx}{x X^2} = \frac{1}{2a^2 X} + \frac{1}{2a^4} \ln \left| \frac{x^2}{X} \right|
∫ x X 2 d x = 2 a 2 X 1 + 2 a 4 1 ln X x 2
∫ d x x X 3 = 1 4 a 2 X 2 + 1 2 a 4 X + 1 2 a 6 ln ∣ x 2 X ∣ \displaystyle \int \frac{dx}{x X^3} = \frac{1}{4a^2 X^2} + \frac{1}{2a^4 X} + \frac{1}{2a^6} \ln \left| \frac{x^2}{X} \right|
∫ x X 3 d x = 4 a 2 X 2 1 + 2 a 4 X 1 + 2 a 6 1 ln X x 2
∫ d x x 2 X = − 1 a 4 x ∓ x a 4 X \displaystyle \int \frac{dx}{x^2 X} = -\frac{1}{a^4 x} \mp \frac{x}{a^4 X} \quad
∫ x 2 X d x = − a 4 x 1 ∓ a 4 X x
∫ d x x 3 X = − 1 2 a 2 x 2 ∓ 1 2 a 4 ln ∣ x 2 X ∣ \displaystyle \int \frac{dx}{x^3 X} = -\frac{1}{2a^2 x^2} \mp \frac{1}{2a^4} \ln \left| \frac{x^2}{X} \right|
∫ x 3 X d x = − 2 a 2 x 2 1 ∓ 2 a 4 1 ln X x 2
∫ d x x 3 X 2 = − 1 2 a 4 x 2 ∓ 1 2 a 4 X ∓ 1 a 6 ln ∣ x 2 X ∣ \displaystyle \int \frac{dx}{x^3 X^2} = -\frac{1}{2a^4 x^2} \mp \frac{1}{2a^4 X} \mp \frac{1}{a^6} \ln \left| \frac{x^2}{X} \right|
∫ x 3 X 2 d x = − 2 a 4 x 2 1 ∓ 2 a 4 X 1 ∓ a 6 1 ln X x 2
∫ d x x 3 X 3 = − 1 2 a 6 x 2 ∓ 1 a 6 X ∓ 1 4 a 6 X 2 ∓ 3 2 a 8 ln ∣ x 2 X ∣ \displaystyle \int \frac{dx}{x^3 X^3} = -\frac{1}{2a^6 x^2} \mp \frac{1}{a^6 X} \mp \frac{1}{4a^6 X^2} \mp \frac{3}{2a^8} \ln \left| \frac{x^2}{X} \right|
∫ x 3 X 3 d x = − 2 a 6 x 2 1 ∓ a 6 X 1 ∓ 4 a 6 X 2 1 ∓ 2 a 8 3 ln X x 2
∫ d x ( b + c x ) X = 1 a 2 c 2 ∓ b 2 [ c ln ∣ b + c x ∣ − c 2 ln ∣ X ∣ ∓ b a Y ] \displaystyle \int \frac{dx}{(b + cx) X} = \frac{1}{a^2 c^2 \mp b^2} \left[ \, c \ln |b + cx| - \frac{c}{2} \ln |X| \mp \frac{b}{a} \, Y \, \right]
∫ ( b + c x ) X d x = a 2 c 2 ∓ b 2 1 [ c ln ∣ b + c x ∣ − 2 c ln ∣ X ∣ ∓ a b Y ]
The sign in the denominator a 2 c 2 ∓ b 2 a^2 c^2 \mp b^2 a 2 c 2 ∓ b 2 and in the term ∓ b a Y \mp \frac{b}{a} Y ∓ a b Y is consistent with the definition of X X X (upper for + + + , lower for − - − ). It is assumed that a 2 c 2 ≠ b 2 a^2 c^2 \neq b^2 a 2 c 2 = b 2 .
Let X = a 3 ± x 3 X = a^3 \pm x^3 X = a 3 ± x 3 .
In formulas containing double signs (± \pm ± or ∓ \mp ∓ ), the upper sign corresponds to X = a 3 + x 3 X = a^3 + x^3 X = a 3 + x 3 , and the lower sign to X = a 3 − x 3 X = a^3 - x^3 X = a 3 − x 3 .
∫ d x X = 1 6 a 2 ln ∣ ( a ± x ) 2 a 2 ∓ a x + x 2 ∣ ± 1 a 2 3 arctan ( 2 x ∓ a a 3 ) . \int \frac{dx}{X} = \frac{1}{6a^2} \ln\!\left| \frac{(a \pm x)^2}{a^2 \mp ax + x^2} \right| \pm \frac{1}{a^2\sqrt{3}} \arctan\!\left( \frac{2x \mp a}{a\sqrt{3}} \right).
∫ X d x = 6 a 2 1 ln a 2 ∓ a x + x 2 ( a ± x ) 2 ± a 2 3 1 arctan ( a 3 2 x ∓ a ) .
∫ d x X 2 = x 3 a 3 X + 2 3 a 3 ∫ d x X . \int \frac{dx}{X^2} = \frac{x}{3a^3 X} + \frac{2}{3a^3} \int \frac{dx}{X}.
∫ X 2 d x = 3 a 3 X x + 3 a 3 2 ∫ X d x .
∫ x d x X = 1 6 a ln ∣ a 2 ∓ a x + x 2 ( a ± x ) 2 ∣ ± 1 a 3 arctan ( 2 x ∓ a a 3 ) . \int \frac{x \, dx}{X} = \frac{1}{6a} \ln\!\left| \frac{a^2 \mp ax + x^2}{(a \pm x)^2} \right| \pm \frac{1}{a\sqrt{3}} \arctan\!\left( \frac{2x \mp a}{a\sqrt{3}} \right).
∫ X x d x = 6 a 1 ln ( a ± x ) 2 a 2 ∓ a x + x 2 ± a 3 1 arctan ( a 3 2 x ∓ a ) .
∫ x d x X 2 = x 2 3 a 3 X + 1 3 a 3 ∫ x d x X . \int \frac{x \, dx}{X^2} = \frac{x^2}{3a^3 X} + \frac{1}{3a^3} \int \frac{x \, dx}{X}.
∫ X 2 x d x = 3 a 3 X x 2 + 3 a 3 1 ∫ X x d x .
∫ x 2 d x X = ± 1 3 ln ∣ X ∣ . \int \frac{x^2 \, dx}{X} = \pm \frac{1}{3} \ln |X|.
∫ X x 2 d x = ± 3 1 ln ∣ X ∣.
∫ x 2 d x X 2 = ∓ 1 3 X . \int \frac{x^2 \, dx}{X^2} = \mp \frac{1}{3X}.
∫ X 2 x 2 d x = ∓ 3 X 1 .
∫ x 3 d x X = ± x ∓ a 3 ∫ d x X . \int \frac{x^3 \, dx}{X} = \pm x \mp a^3 \int \frac{dx}{X}.
∫ X x 3 d x = ± x ∓ a 3 ∫ X d x .
∫ x 3 d x X 2 = ± x 3 X ± 1 3 ∫ d x X . \int \frac{x^3 \, dx}{X^2} = \pm \frac{x}{3X} \pm \frac{1}{3} \int \frac{dx}{X}.
∫ X 2 x 3 d x = ± 3 X x ± 3 1 ∫ X d x .
∫ d x x X = 1 3 a 3 ln ∣ x 3 X ∣ . \int \frac{dx}{x X} = \frac{1}{3a^3} \ln\!\left| \frac{x^3}{X} \right|.
∫ x X d x = 3 a 3 1 ln X x 3 .
∫ d x x X 2 = 1 3 a 3 X + 1 3 a 6 ln ∣ x 3 X ∣ . \int \frac{dx}{x X^2} = \frac{1}{3a^3 X} + \frac{1}{3a^6} \ln\!\left| \frac{x^3}{X} \right|.
∫ x X 2 d x = 3 a 3 X 1 + 3 a 6 1 ln X x 3 .
∫ d x x 2 X = − 1 a 3 x ∓ 1 a 3 ∫ x d x X . \int \frac{dx}{x^2 X} = -\frac{1}{a^3 x} \mp \frac{1}{a^3} \int \frac{x \, dx}{X}.
∫ x 2 X d x = − a 3 x 1 ∓ a 3 1 ∫ X x d x .
∫ d x x 2 X 2 = − 1 a 6 x ∓ x 2 3 a 6 X ∓ 4 3 a 6 ∫ x d x X . \int \frac{dx}{x^2 X^2} = -\frac{1}{a^6 x} \mp \frac{x^2}{3a^6 X} \mp \frac{4}{3a^6} \int \frac{x \, dx}{X}.
∫ x 2 X 2 d x = − a 6 x 1 ∓ 3 a 6 X x 2 ∓ 3 a 6 4 ∫ X x d x .
∫ d x x 3 X = − 1 2 a 3 x 2 ∓ 1 a 3 ∫ d x X . \int \frac{dx}{x^3 X} = -\frac{1}{2a^3 x^2} \mp \frac{1}{a^3} \int \frac{dx}{X}.
∫ x 3 X d x = − 2 a 3 x 2 1 ∓ a 3 1 ∫ X d x .
∫ d x x 3 X 2 = − 1 2 a 6 x 2 ∓ x 3 a 6 X ∓ 5 3 a 6 ∫ d x X . \int \frac{dx}{x^3 X^2} = -\frac{1}{2a^6 x^2} \mp \frac{x}{3a^6 X} \mp \frac{5}{3a^6} \int \frac{dx}{X}.
∫ x 3 X 2 d x = − 2 a 6 x 2 1 ∓ 3 a 6 X x ∓ 3 a 6 5 ∫ X d x .
∫ d x a 4 + x 4 = 1 4 a 3 2 ln ( x 2 + a 2 x + a 2 x 2 − a 2 x + a 2 ) + 1 2 a 3 2 arctan ( a 2 x a 2 − x 2 ) . \int \frac{dx}{a^4 + x^4} = \frac{1}{4a^3\sqrt{2}} \ln\!\left( \frac{x^2 + a\sqrt{2}\,x + a^2}{x^2 - a\sqrt{2}\,x + a^2} \right) + \frac{1}{2a^3\sqrt{2}} \arctan\!\left( \frac{a\sqrt{2}\,x}{a^2 - x^2} \right).
∫ a 4 + x 4 d x = 4 a 3 2 1 ln ( x 2 − a 2 x + a 2 x 2 + a 2 x + a 2 ) + 2 a 3 2 1 arctan ( a 2 − x 2 a 2 x ) .
∫ x d x a 4 + x 4 = 1 2 a 2 arctan ( x 2 a 2 ) . \int \frac{x \, dx}{a^4 + x^4} = \frac{1}{2a^2} \arctan\!\left( \frac{x^2}{a^2} \right).
∫ a 4 + x 4 x d x = 2 a 2 1 arctan ( a 2 x 2 ) .
∫ x 2 d x a 4 + x 4 = − 1 4 a 2 ln ( x 2 + a 2 x + a 2 x 2 − a 2 x + a 2 ) + 1 2 a 2 arctan ( a 2 x a 2 − x 2 ) . \int \frac{x^2 \, dx}{a^4 + x^4} = -\frac{1}{4a\sqrt{2}} \ln\!\left( \frac{x^2 + a\sqrt{2}\,x + a^2}{x^2 - a\sqrt{2}\,x + a^2} \right) + \frac{1}{2a\sqrt{2}} \arctan\!\left( \frac{a\sqrt{2}\,x}{a^2 - x^2} \right).
∫ a 4 + x 4 x 2 d x = − 4 a 2 1 ln ( x 2 − a 2 x + a 2 x 2 + a 2 x + a 2 ) + 2 a 2 1 arctan ( a 2 − x 2 a 2 x ) .
∫ x 3 d x a 4 + x 4 = 1 4 ln ( a 4 + x 4 ) . \int \frac{x^3 \, dx}{a^4 + x^4} = \frac{1}{4} \ln\!\left( a^4 + x^4 \right).
∫ a 4 + x 4 x 3 d x = 4 1 ln ( a 4 + x 4 ) .
∫ d x a 4 − x 4 = 1 4 a 3 ln ∣ a + x a − x ∣ + 1 2 a 3 arctan ( x a ) . \int \frac{dx}{a^4 - x^4} = \frac{1}{4a^3} \ln\!\left| \frac{a + x}{a - x} \right| + \frac{1}{2a^3} \arctan\!\left( \frac{x}{a} \right).
∫ a 4 − x 4 d x = 4 a 3 1 ln a − x a + x + 2 a 3 1 arctan ( a x ) .
∫ x d x a 4 − x 4 = 1 4 a 2 ln ∣ a 2 + x 2 a 2 − x 2 ∣ . \int \frac{x \, dx}{a^4 - x^4} = \frac{1}{4a^2} \ln\!\left| \frac{a^2 + x^2}{a^2 - x^2} \right|.
∫ a 4 − x 4 x d x = 4 a 2 1 ln a 2 − x 2 a 2 + x 2 .
∫ x 2 d x a 4 − x 4 = 1 4 a ln ∣ a + x a − x ∣ − 1 2 a arctan ( x a ) . \int \frac{x^2 \, dx}{a^4 - x^4} = \frac{1}{4a} \ln\!\left| \frac{a + x}{a - x} \right| - \frac{1}{2a} \arctan\!\left( \frac{x}{a} \right).
∫ a 4 − x 4 x 2 d x = 4 a 1 ln a − x a + x − 2 a 1 arctan ( a x ) .
∫ x 3 d x a 4 − x 4 = − 1 4 ln ∣ a 4 − x 4 ∣ . \int \frac{x^3 \, dx}{a^4 - x^4} = -\frac{1}{4} \ln\!\left| a^4 - x^4 \right|.
∫ a 4 − x 4 x 3 d x = − 4 1 ln a 4 − x 4 .
Distinct linear factors:
1 ( a + b x ) ( f + g x ) = 1 b f − a g ( b a + b x − g f + g x ) , \frac{1}{(a + bx)(f + gx)} = \frac{1}{bf - ag} \left( \frac{b}{a + bx} - \frac{g}{f + gx} \right),
( a + b x ) ( f + gx ) 1 = b f − a g 1 ( a + b x b − f + gx g ) ,
assuming b f − a g ≠ 0 bf - ag \neq 0 b f − a g = 0 .
106) Three distinct linear factors:
1 ( x + a ) ( x + b ) ( x + c ) = A x + a + B x + b + C x + c , \frac{1}{(x + a)(x + b)(x + c)} = \frac{A}{x + a} + \frac{B}{x + b} + \frac{C}{x + c},
( x + a ) ( x + b ) ( x + c ) 1 = x + a A + x + b B + x + c C ,
with
A = 1 ( b − a ) ( c − a ) , B = 1 ( a − b ) ( c − b ) , C = 1 ( a − c ) ( b − c ) . A = \frac{1}{(b - a)(c - a)}, \quad
B = \frac{1}{(a - b)(c - b)}, \quad
C = \frac{1}{(a - c)(b - c)}.
A = ( b − a ) ( c − a ) 1 , B = ( a − b ) ( c − b ) 1 , C = ( a − c ) ( b − c ) 1 .
Four distinct linear factors:
1 ( x + a ) ( x + b ) ( x + c ) ( x + d ) = A x + a + B x + b + C x + c + D x + d , \frac{1}{(x + a)(x + b)(x + c)(x + d)} = \frac{A}{x + a} + \frac{B}{x + b} + \frac{C}{x + c} + \frac{D}{x + d},
( x + a ) ( x + b ) ( x + c ) ( x + d ) 1 = x + a A + x + b B + x + c C + x + d D ,
with
A = 1 ( b − a ) ( c − a ) ( d − a ) , B = 1 ( a − b ) ( c − b ) ( d − b ) , A = \frac{1}{(b - a)(c - a)(d - a)}, \quad
B = \frac{1}{(a - b)(c - b)(d - b)},
A = ( b − a ) ( c − a ) ( d − a ) 1 , B = ( a − b ) ( c − b ) ( d − b ) 1 ,
C = 1 ( a − c ) ( b − c ) ( d − c ) , D = 1 ( a − d ) ( b − d ) ( c − d ) . C = \frac{1}{(a - c)(b - c)(d - c)}, \quad
D = \frac{1}{(a - d)(b - d)(c - d)}.
C = ( a − c ) ( b − c ) ( d − c ) 1 , D = ( a − d ) ( b − d ) ( c − d ) 1 .
Irreducible quadratic factors:
1 ( a + b x 2 ) ( f + g x 2 ) = 1 b f − a g ( b a + b x 2 − g f + g x 2 ) , \frac{1}{(a + bx^2)(f + gx^2)} = \frac{1}{bf - ag} \left( \frac{b}{a + bx^2} - \frac{g}{f + gx^2} \right),
( a + b x 2 ) ( f + g x 2 ) 1 = b f − a g 1 ( a + b x 2 b − f + g x 2 g ) ,
assuming b f − a g ≠ 0 bf - ag \neq 0 b f − a g = 0 .