equationzone

Integral Calculus

Table of Indefinite Integrals of Rational Functions

Comprehensive collection of integration formulas involving linear, quadratic, and polynomial expressions — perfect for university calculus students and researchers. Includes integrals of ax+bax + b, ax2+bx+cax^2 + bx + c, an±xna^n \pm x^n, and more, with clear notation and reduction formulas.

Integrals Involving ax+bax + b

Notation

We denote:

X=ax+bX = ax + b

I. Basic Integrals of XnX^n

  1. Xndx=1a(n+1)Xn+1(n1)\displaystyle \int X^n \, dx = \frac{1}{a(n+1)} X^{n+1} \qquad (n \neq -1)

(For n=1n = -1, see formula 2.)

  1. dxX=1alnX\displaystyle \int \frac{dx}{X} = \frac{1}{a} \ln |X|


II. Integrals of xmXnx^m X^n

  1. xXndx=1a2(n+2)Xn+2ba2(n+1)Xn+1(n1,2)\displaystyle \int x X^n \, dx = \frac{1}{a^2(n+2)} X^{n+2} - \frac{b}{a^2(n+1)} X^{n+1} \qquad (n \neq -1, -2)

(For n=1,2n = -1, -2, see formulas 5 and 6.)

  1. xmXndx=1am+1(Xb)mXndX\displaystyle \int x^m X^n \, dx = \frac{1}{a^{m+1}} \int (X - b)^m X^n \, dX

This substitution is useful when mm is an integer or nn is fractional. Expand (Xb)m(X - b)^m using the binomial theorem.


III. Integrals of xmXn\dfrac{x^m}{X^n}

Case m=1m = 1

  1. xdxX=xaba2lnX\displaystyle \int \frac{x \, dx}{X} = \frac{x}{a} - \frac{b}{a^2} \ln |X|

  2. xdxX2=ba2X+1a2lnX\displaystyle \int \frac{x \, dx}{X^2} = \frac{b}{a^2 X} + \frac{1}{a^2} \ln |X|

  3. xdxX3=1a2(1X+b2X2)\displaystyle \int \frac{x \, dx}{X^3} = \frac{1}{a^2} \left( -\frac{1}{X} + \frac{b}{2X^2} \right)

  4. xdxXn=1a2(1(n2)Xn2+b(n1)Xn1)(n1,2)\displaystyle \int \frac{x \, dx}{X^n} = \frac{1}{a^2} \left( \frac{-1}{(n-2)X^{n-2}} + \frac{b}{(n-1)X^{n-1}} \right) \qquad (n \neq 1, 2)

Case m=2m = 2

  1. x2dxX=1a3(X222bX+b2lnX)\displaystyle \int \frac{x^2 \, dx}{X} = \frac{1}{a^3} \left( \frac{X^2}{2} - 2bX + b^2 \ln |X| \right)

  2. x2dxX2=1a3(X2blnXb2X)\displaystyle \int \frac{x^2 \, dx}{X^2} = \frac{1}{a^3} \left( X - 2b \ln |X| - \frac{b^2}{X} \right)

  3. x2dxX3=1a3(lnX+2bXb22X2)\displaystyle \int \frac{x^2 \, dx}{X^3} = \frac{1}{a^3} \left( \ln |X| + \frac{2b}{X} - \frac{b^2}{2X^2} \right)

  4. x2dxXn=1a3[1(n3)Xn3+2b(n2)Xn2b2(n1)Xn1](n1,2,3)\displaystyle \int \frac{x^2 \, dx}{X^n} = \frac{1}{a^3} \left[ \frac{-1}{(n-3)X^{n-3}} + \frac{2b}{(n-2)X^{n-2}} - \frac{b^2}{(n-1)X^{n-1}} \right] \qquad (n \neq 1, 2, 3)

Case m=3m = 3

  1. x3dxX=1a4(X333bX22+3b2Xb3lnX)\displaystyle \int \frac{x^3 \, dx}{X} = \frac{1}{a^4} \left( \frac{X^3}{3} - \frac{3bX^2}{2} + 3b^2 X - b^3 \ln |X| \right)

  2. x3dxX2=1a4(X223bX+3b2lnX+b3X)\displaystyle \int \frac{x^3 \, dx}{X^2} = \frac{1}{a^4} \left( \frac{X^2}{2} - 3bX + 3b^2 \ln |X| + \frac{b^3}{X} \right)

  3. x3dxX3=1a4(X3blnX3b2X+b32X2)\displaystyle \int \frac{x^3 \, dx}{X^3} = \frac{1}{a^4} \left( X - 3b \ln |X| - \frac{3b^2}{X} + \frac{b^3}{2X^2} \right)

  4. x3dxX4=1a4(lnX+3bX3b22X2+b33X3)\displaystyle \int \frac{x^3 \, dx}{X^4} = \frac{1}{a^4} \left( \ln |X| + \frac{3b}{X} - \frac{3b^2}{2X^2} + \frac{b^3}{3X^3} \right)

  5. x3dxXn=1a4[1(n4)Xn4+3b(n3)Xn33b2(n2)Xn2+b3(n1)Xn1](n1,2,3,4)\displaystyle \int \frac{x^3 \, dx}{X^n} = \frac{1}{a^4} \left[ \frac{-1}{(n-4)X^{n-4}} + \frac{3b}{(n-3)X^{n-3}} - \frac{3b^2}{(n-2)X^{n-2}} + \frac{b^3}{(n-1)X^{n-1}} \right] \qquad (n \neq 1, 2, 3, 4)


IV. Integrals of 1xmXn\dfrac{1}{x^m X^n}

Case m=1m = 1

  1. dxxX=1blnxX\displaystyle \int \frac{dx}{xX} = \frac{1}{b} \ln \left| \frac{x}{X} \right|

Note:

1blnx1blnX=1blnxX\frac{1}{b} \ln|x| - \frac{1}{b} \ln|X| = \frac{1}{b} \ln\left|\frac{x}{X}\right|, which is equivalent to 1blnXx-\frac{1}{b} \ln\left|\frac{X}{x}\right|

  1. dxxX2=1b2(ablnXxaX)\displaystyle \int \frac{dx}{xX^2} = \frac{1}{b^2} \left( \frac{a}{b} \ln \left| \frac{X}{x} \right| - \frac{a}{X} \right)

  2. dxxX3=1b3(a22b2lnXxa22X2abX)\displaystyle \int \frac{dx}{xX^3} = \frac{1}{b^3} \left( \frac{a^2}{2b^2} \ln \left| \frac{X}{x} \right| - \frac{a^2}{2X^2} - \frac{a}{bX} \right)

  3. dxxXn=1bn[1n1aXn11blnxX](n1)\displaystyle \int \frac{dx}{xX^n} = \frac{1}{b^n} \left[ \frac{1}{n-1} \cdot \frac{a}{X^{n-1}} - \frac{1}{b} \ln \left| \frac{x}{X} \right| \right] \quad (n \geq 1)

Note:

This is a simplified form; the general formula involving a summation is given below.

Case m=2m = 2

  1. dxx2X=1bxab2lnXx\displaystyle \int \frac{dx}{x^2 X} = -\frac{1}{bx} - \frac{a}{b^2} \ln \left| \frac{X}{x} \right|

  2. dxx2X2=1b2x+2ab3lnXxab2X\displaystyle \int \frac{dx}{x^2 X^2} = -\frac{1}{b^2 x} + \frac{2a}{b^3} \ln \left| \frac{X}{x} \right| - \frac{a}{b^2 X}

  3. dxx2X3=1b3x+3ab4lnXx3a2b3X22ab3X\displaystyle \int \frac{dx}{x^2 X^3} = -\frac{1}{b^3 x} + \frac{3a}{b^4} \ln \left| \frac{X}{x} \right| - \frac{3a}{2b^3 X^2} - \frac{2a}{b^3 X}

Case m=3m = 3

  1. dxx3X=12bx2+ab2x+a2b3lnxX\displaystyle \int \frac{dx}{x^3 X} = -\frac{1}{2b x^2} + \frac{a}{b^2 x} + \frac{a^2}{b^3} \ln \left| \frac{x}{X} \right|

  2. dxx3X2=12b2x2+2ab3x3a2b4lnxX+a2b3X\displaystyle \int \frac{dx}{x^3 X^2} = -\frac{1}{2b^2 x^2} + \frac{2a}{b^3 x} - \frac{3a^2}{b^4} \ln \left| \frac{x}{X} \right| + \frac{a^2}{b^3 X}

  3. dxx3X3=12b3x2+3ab4x6a2b5lnxX+4a2b4Xa22b3X2\displaystyle \int \frac{dx}{x^3 X^3} = -\frac{1}{2b^3 x^2} + \frac{3a}{b^4 x} - \frac{6a^2}{b^5} \ln \left| \frac{x}{X} \right| + \frac{4a^2}{b^4 X} - \frac{a^2}{2b^3 X^2}


V. General Formula for dxxmXn\displaystyle \int \frac{dx}{x^m X^n}

The general formula is complex. For particular cases, it is advisable to use the substitution u=xXu = \frac{x}{X} or partial fraction decomposition.

A closed-form expression is:

  1. dxxmXn=1(m1)bxm1(m+n2)a(m1)bdxxm1Xn(m>1)\displaystyle \int \frac{dx}{x^m X^n} = -\frac{1}{(m-1)b x^{m-1}} - \frac{(m+n-2)a}{(m-1)b} \int \frac{dx}{x^{m-1} X^n} \quad (m > 1)

For the integral with m=1m=1, we have:

  1. dxxXn=1bn[an11Xn1+lnxX](n1)\displaystyle \int \frac{dx}{x X^n} = \frac{1}{b^n} \left[ \frac{a}{n-1} \cdot \frac{1}{X^{n-1}} + \ln \left| \frac{x}{X} \right| \right] \quad (n \neq 1)


Integrals Involving Linear Expressions (ax+b)(ax+b) and (fx+g)(fx+g)

Notation

For formulas 31–34, define:

Δ=bfag\Delta = bf - ag


I. Integrals of Rational Functions with Linear Numerator and Denominator

  1. ax+bfx+gdx=afx+Δf2lnfx+g\displaystyle \int \frac{ax + b}{fx + g} \, dx = \frac{a}{f}x + \frac{\Delta}{f^2} \ln |fx + g|


II. Integrals with a Product of Two Linear Terms in the Denominator

  1. dx(ax+b)(fx+g)=1Δlnfx+gax+b(Δ0)\displaystyle \int \frac{dx}{(ax + b)(fx + g)} = \frac{1}{\Delta} \ln \left| \frac{fx + g}{ax + b} \right| \qquad (\Delta \neq 0)

  2. xdx(ax+b)(fx+g)=1Δ(balnax+bgflnfx+g)(Δ0)\displaystyle \int \frac{x \, dx}{(ax + b)(fx + g)} = \frac{1}{\Delta} \left( \frac{b}{a} \ln |ax + b| - \frac{g}{f} \ln |fx + g| \right) \qquad (\Delta \neq 0)

  3. dx(ax+b)2(fx+g)=1Δ(1ax+b+fΔlnfx+gax+b)(Δ0)\displaystyle \int \frac{dx}{(ax + b)^2 (fx + g)} = \frac{1}{\Delta} \left( \frac{1}{ax + b} + \frac{f}{\Delta} \ln \left| \frac{fx + g}{ax + b} \right| \right) \qquad (\Delta \neq 0)


III. Special Cases with (a+x)(a+x) and (b+x)(b+x)

For formulas 35–39, denominators involve (a+x)(a+x) and (b+x)(b+x), with aba \neq b.

  1. xdx(a+x)(b+x)2=b(ab)(b+x)+a(ab)2lnb+xa+x\displaystyle \int \frac{x \, dx}{(a + x)(b + x)^2} = \frac{b}{(a - b)(b + x)} + \frac{a}{(a - b)^2} \ln \left| \frac{b + x}{a + x} \right|

  2. x2dx(a+x)(b+x)2=b2(ab)(b+x)+a2(ab)2lna+x+b(b2a)(ab)2lnb+x\displaystyle \int \frac{x^2 \, dx}{(a + x)(b + x)^2} = \frac{b^2}{(a - b)(b + x)} + \frac{a^2}{(a - b)^2} \ln |a + x| + \frac{b(b - 2a)}{(a - b)^2} \ln |b + x|

  3. dx(a+x)2(b+x)2=1(ab)2(1a+x+1b+x)+2(ab)3lna+xb+x\displaystyle \int \frac{dx}{(a + x)^2 (b + x)^2} = -\frac{1}{(a - b)^2} \left( \frac{1}{a + x} + \frac{1}{b + x} \right) + \frac{2}{(a - b)^3} \ln \left| \frac{a + x}{b + x} \right|

  4. xdx(a+x)2(b+x)2=1(ab)2(aa+x+bb+x)a+b(ab)3lna+xb+x\displaystyle \int \frac{x \, dx}{(a + x)^2 (b + x)^2} = \frac{1}{(a - b)^2} \left( \frac{a}{a + x} + \frac{b}{b + x} \right) - \frac{a + b}{(a - b)^3} \ln \left| \frac{a + x}{b + x} \right|

  5. x2dx(a+x)2(b+x)2=1(ab)2(a2a+x+b2b+x)+2ab(ab)3lna+xb+x\displaystyle \int \frac{x^2 \, dx}{(a + x)^2 (b + x)^2} = -\frac{1}{(a - b)^2} \left( \frac{a^2}{a + x} + \frac{b^2}{b + x} \right) + \frac{2ab}{(a - b)^3} \ln \left| \frac{a + x}{b + x} \right|


Integrals Involving ax2+bx+cax^2 + bx + c

Notation

X=ax2+bx+c,Δ=4acb2X = ax^2 + bx + c, \qquad \Delta = 4ac - b^2


I. Integrals of 1Xn\displaystyle \frac{1}{X^n}

dxX={2Δarctan(2ax+bΔ),Δ>0,1Δln2ax+bΔ2ax+b+Δ,Δ<0.\int \frac{dx}{X} = \begin{cases} \displaystyle \frac{2}{\sqrt{\Delta}} \arctan\left( \frac{2ax + b}{\sqrt{\Delta}} \right), & \Delta > 0, \\[2ex] \displaystyle \frac{1}{\sqrt{-\Delta}} \ln \left| \frac{2ax + b - \sqrt{-\Delta}}{2ax + b + \sqrt{-\Delta}} \right|, & \Delta < 0. \end{cases}

dxX2=2ax+bΔX+4aΔdxX.\int \frac{dx}{X^2} = \frac{2ax + b}{\Delta \, X} + \frac{4a}{\Delta} \int \frac{dx}{X}.

dxX3=2ax+bΔ(12X2+3aΔX)+12a2Δ2dxX.\int \frac{dx}{X^3} = \frac{2ax + b}{\Delta} \left( \frac{1}{2X^2} + \frac{3a}{\Delta \, X} \right) + \frac{12a^2}{\Delta^2} \int \frac{dx}{X}.

  1. Reduction formula:

dxXn+1=2ax+bnΔXn+2(2n1)anΔdxXn,n1.\int \frac{dx}{X^{n+1}} = \frac{2ax + b}{n \Delta \, X^n} + \frac{2(2n-1)a}{n \Delta} \int \frac{dx}{X^n}, \qquad n \ge 1.


II. Integrals of xmXn\displaystyle \frac{x^m}{X^n} (m=1,2m = 1, 2)

xdxX=12alnXb2adxX.\int \frac{x \, dx}{X} = \frac{1}{2a} \ln|X| - \frac{b}{2a} \int \frac{dx}{X}.

xdxX2=bx+2cΔX2bΔdxX.\int \frac{x \, dx}{X^2} = -\frac{bx + 2c}{\Delta \, X} - \frac{2b}{\Delta} \int \frac{dx}{X}.

xdxXn+1=bx+2cnΔXn(2n1)bnΔdxXn,n1.\int \frac{x \, dx}{X^{n+1}} = -\frac{bx + 2c}{n \Delta \, X^n} - \frac{(2n-1)b}{n \Delta} \int \frac{dx}{X^n}, \qquad n \ge 1.

x2dxX=xab2a2lnX+b22ac2a2dxX.\int \frac{x^2 \, dx}{X} = \frac{x}{a} - \frac{b}{2a^2} \ln|X| + \frac{b^2 - 2ac}{2a^2} \int \frac{dx}{X}.

x2dxX2=(b22ac)x+bcaΔX+4cΔdxX.\int \frac{x^2 \, dx}{X^2} = \frac{(b^2 - 2ac)x + bc}{a \Delta \, X} + \frac{4c}{\Delta} \int \frac{dx}{X}.


III. Reduction Formulas for xmdxXn\displaystyle \int \frac{x^m \, dx}{X^n}

  1. Case m=2m = 2:

x2dxXn+1=x(2n1)aXn+c(2n1)adxXn+1(n1)b(2n1)axdxXn+1.\int \frac{x^2 \, dx}{X^{n+1}} = -\frac{x}{(2n-1)a \, X^n} + \frac{c}{(2n-1)a} \int \frac{dx}{X^{n+1}} - \frac{(n-1)b}{(2n-1)a} \int \frac{x \, dx}{X^{n+1}}.

  1. General case m<2nm < 2n:

xmdxXn+1=xm1(2nm+1)aXn+(m1)c(2nm+1)axm2dxXn+1(nm+1)b(2nm+1)axm1dxXn+1.\int \frac{x^m \, dx}{X^{n+1}} = -\frac{x^{m-1}}{(2n-m+1)a \, X^n} + \frac{(m-1)c}{(2n-m+1)a} \int \frac{x^{m-2} \, dx}{X^{n+1}} - \frac{(n-m+1)b}{(2n-m+1)a} \int \frac{x^{m-1} \, dx}{X^{n+1}}.

  1. Case m=2nm = 2n:

x2n1dxXn=1ax2n3dxXn1cax2n3dxXnbax2n2dxXn.\int \frac{x^{2n-1} \, dx}{X^n} = \frac{1}{a} \int \frac{x^{2n-3} \, dx}{X^{n-1}} - \frac{c}{a} \int \frac{x^{2n-3} \, dx}{X^n} - \frac{b}{a} \int \frac{x^{2n-2} \, dx}{X^n}.


IV. Integrals with xx in the Denominator

dxxX=12clnx2Xb2cdxX.\int \frac{dx}{x \, X} = \frac{1}{2c} \ln\left| \frac{x^2}{X} \right| - \frac{b}{2c} \int \frac{dx}{X}.

dxxXn+1=12cnXnb2cdxXn+1+1cdxxXn,n1.\int \frac{dx}{x \, X^{n+1}} = \frac{1}{2c n \, X^n} - \frac{b}{2c} \int \frac{dx}{X^{n+1}} + \frac{1}{c} \int \frac{dx}{x \, X^n}, \qquad n \ge 1.

dxx2X=1cx+b2c2lnx2X+(b22c2ac)dxX.\int \frac{dx}{x^2 \, X} = -\frac{1}{c x} + \frac{b}{2c^2} \ln\left| \frac{x^2}{X} \right| + \left( \frac{b^2}{2c^2} - \frac{a}{c} \right) \int \frac{dx}{X}.

  1. Reduction formula:

dxxmXn+1=1(m1)cxm1Xn(2n+m1)a(m1)cdxxm2Xn+1(n+m1)b(m1)cdxxm1Xn+1,m>1.\int \frac{dx}{x^{m} \, X^{n+1}} = -\frac{1}{(m-1)c \, x^{m-1} X^n} - \frac{(2n+m-1)a}{(m-1)c} \int \frac{dx}{x^{m-2} \, X^{n+1}} - \frac{(n+m-1)b}{(m-1)c} \int \frac{dx}{x^{m-1} \, X^{n+1}}, \quad m > 1.


V. Integral with a Linear Factor in the Denominator

dx(fx+g)X=12(cf2bfg+ag2)[fln(fx+g)2X+2agbfΔF(X)],\int \frac{dx}{(fx + g) X} = \frac{1}{2(cf^2 - bfg + ag^2)} \left[ f \ln\left| \frac{(fx + g)^2}{X} \right| + \frac{2ag - bf}{\sqrt{\Delta}} \, F(X) \right],

where
F(X)=arctan(2ax+bΔ)F(X) = \arctan\left( \frac{2ax+b}{\sqrt{\Delta}} \right) if Δ>0\Delta > 0, or
1Δln2ax+bΔ2ax+b+Δ\displaystyle \frac{1}{\sqrt{-\Delta}} \ln \left| \frac{2ax+b-\sqrt{-\Delta}}{2ax+b+\sqrt{-\Delta}} \right| if Δ<0\Delta < 0.

Integrals Involving a2±x2a^2 \pm x^2

Notation

Let X=a2±x2X = a^2 \pm x^2, with a>0a > 0. Define YY as:

Y={arctan(xa)for X=a2+x2,arctanh(xa)=12ln(a+xax)for X=a2x2 if x<a,arccoth(xa)=12ln(x+axa)for X=a2x2 if x>a.Y = \begin{cases} \displaystyle \arctan \left( \frac{x}{a} \right) & \text{for } X = a^2 + x^2, \\[2ex] \displaystyle \operatorname{arctanh} \left( \frac{x}{a} \right) = \frac{1}{2} \ln \left( \frac{a + x}{a - x} \right) & \text{for } X = a^2 - x^2 \text{ if } |x| < a, \\[2ex] \displaystyle \operatorname{arccoth} \left( \frac{x}{a} \right) = \frac{1}{2} \ln \left( \frac{x + a}{x - a} \right) & \text{for } X = a^2 - x^2 \text{ if } |x| > a. \end{cases}

Sign Convention:

In all formulas that follow, the upper sign (± or ∓) corresponds to the case X=a2+x2X = a^2 + x^2, and the lower sign to the case X=a2x2X = a^2 - x^2.

I. Basic Integrals of 1Xn\frac{1}{X^n}

  1. dxX=1aY\displaystyle \int \frac{dx}{X} = \frac{1}{a} \, Y

  2. dxX2=x2a2X+12a3Y\displaystyle \int \frac{dx}{X^2} = \frac{x}{2a^2 X} + \frac{1}{2a^3} \, Y

  3. dxX3=x4a2X2+3x8a4X+38a5Y\displaystyle \int \frac{dx}{X^3} = \frac{x}{4a^2 X^2} + \frac{3x}{8a^4 X} + \frac{3}{8a^5} \, Y

  4. dxXn+1=x2na2Xn+2n12na2dxXn(n1)\displaystyle \int \frac{dx}{X^{n+1}} = \frac{x}{2n a^2 X^n} + \frac{2n - 1}{2n a^2} \int \frac{dx}{X^n} \quad (n \ge 1)


II. Integrals with xx in the Numerator

  1. xdxX=±12lnX\displaystyle \int \frac{x \, dx}{X} = \pm \frac{1}{2} \ln |X|

  2. xdxX2=12X\displaystyle \int \frac{x \, dx}{X^2} = \mp \frac{1}{2X}

  3. xdxX3=14X2\displaystyle \int \frac{x \, dx}{X^3} = \mp \frac{1}{4X^2}

  4. xdxXn+1=12nXn(n1)\displaystyle \int \frac{x \, dx}{X^{n+1}} = \mp \frac{1}{2n X^n} \quad (n \ge 1)


III. Integrals with x2x^2 in the Numerator

  1. x2dxX=±xaY\displaystyle \int \frac{x^2 \, dx}{X} = \pm x \mp a \, Y

  2. x2dxX2=x2X±12aY\displaystyle \int \frac{x^2 \, dx}{X^2} = \mp \frac{x}{2X} \pm \frac{1}{2a} \, Y

  3. x2dxX3=x4X218a2xX±18a3Y\displaystyle \int \frac{x^2 \, dx}{X^3} = \mp \frac{x}{4X^2} \mp \frac{1}{8a^2} \cdot \frac{x}{X} \pm \frac{1}{8a^3} \, Y

  4. x2dxXn+1=x2nXn±12ndxXn(n1)\displaystyle \int \frac{x^2 \, dx}{X^{n+1}} = \mp \frac{x}{2n X^n} \pm \frac{1}{2n} \int \frac{dx}{X^n} \quad (n \ge 1)


IV. Integrals with x3x^3 in the Numerator

  1. x3dxX=±x22a22lnX\displaystyle \int \frac{x^3 \, dx}{X} = \pm \frac{x^2}{2} - \frac{a^2}{2} \ln |X|

  2. x3dxX2=a22X+12lnX\displaystyle \int \frac{x^3 \, dx}{X^2} = \frac{a^2}{2X} + \frac{1}{2} \ln |X|

  3. x3dxX3=12X+a24X2\displaystyle \int \frac{x^3 \, dx}{X^3} = -\frac{1}{2X} + \frac{a^2}{4X^2}

  4. x3dxXn+1=12(n1)Xn1+a22nXn(n>1)\displaystyle \int \frac{x^3 \, dx}{X^{n+1}} = -\frac{1}{2(n-1) X^{n-1}} + \frac{a^2}{2n X^n} \quad (n > 1)


V. Integrals with xx in the Denominator

  1. dxxX=12a2lnx2X\displaystyle \int \frac{dx}{x X} = \frac{1}{2a^2} \ln \left| \frac{x^2}{X} \right|

  2. dxxX2=12a2X+12a4lnx2X\displaystyle \int \frac{dx}{x X^2} = \frac{1}{2a^2 X} + \frac{1}{2a^4} \ln \left| \frac{x^2}{X} \right|

  3. dxxX3=14a2X2+12a4X+12a6lnx2X\displaystyle \int \frac{dx}{x X^3} = \frac{1}{4a^2 X^2} + \frac{1}{2a^4 X} + \frac{1}{2a^6} \ln \left| \frac{x^2}{X} \right|

  4. dxx2X=1a4xxa4X\displaystyle \int \frac{dx}{x^2 X} = -\frac{1}{a^4 x} \mp \frac{x}{a^4 X} \quad


VI. Integrals with x3x^3 in the Denominator

  1. dxx3X=12a2x212a4lnx2X\displaystyle \int \frac{dx}{x^3 X} = -\frac{1}{2a^2 x^2} \mp \frac{1}{2a^4} \ln \left| \frac{x^2}{X} \right|

  2. dxx3X2=12a4x212a4X1a6lnx2X\displaystyle \int \frac{dx}{x^3 X^2} = -\frac{1}{2a^4 x^2} \mp \frac{1}{2a^4 X} \mp \frac{1}{a^6} \ln \left| \frac{x^2}{X} \right|

  3. dxx3X3=12a6x21a6X14a6X232a8lnx2X\displaystyle \int \frac{dx}{x^3 X^3} = -\frac{1}{2a^6 x^2} \mp \frac{1}{a^6 X} \mp \frac{1}{4a^6 X^2} \mp \frac{3}{2a^8} \ln \left| \frac{x^2}{X} \right|


VII. Integrals with a Linear Factor (b+cx)(b + cx)

  1. dx(b+cx)X=1a2c2b2[clnb+cxc2lnXbaY]\displaystyle \int \frac{dx}{(b + cx) X} = \frac{1}{a^2 c^2 \mp b^2} \left[ \, c \ln |b + cx| - \frac{c}{2} \ln |X| \mp \frac{b}{a} \, Y \, \right]

Note:

The sign in the denominator a2c2b2a^2 c^2 \mp b^2 and in the term baY\mp \frac{b}{a} Y is consistent with the definition of XX (upper for ++, lower for -). It is assumed that a2c2b2a^2 c^2 \neq b^2.

Integrals Involving a3±x3a^3 \pm x^3

Notation:

Let X=a3±x3X = a^3 \pm x^3.

Sign Convention:

In formulas containing double signs (±\pm or \mp), the upper sign corresponds to X=a3+x3X = a^3 + x^3, and the lower sign to X=a3x3X = a^3 - x^3.


I. Integrals of 1Xn\displaystyle \frac{1}{X^n}

dxX=16a2ln ⁣(a±x)2a2ax+x2±1a23arctan ⁣(2xaa3).\int \frac{dx}{X} = \frac{1}{6a^2} \ln\!\left| \frac{(a \pm x)^2}{a^2 \mp ax + x^2} \right| \pm \frac{1}{a^2\sqrt{3}} \arctan\!\left( \frac{2x \mp a}{a\sqrt{3}} \right).

dxX2=x3a3X+23a3dxX.\int \frac{dx}{X^2} = \frac{x}{3a^3 X} + \frac{2}{3a^3} \int \frac{dx}{X}.


II. Integrals with xx in the Numerator

xdxX=16aln ⁣a2ax+x2(a±x)2±1a3arctan ⁣(2xaa3).\int \frac{x \, dx}{X} = \frac{1}{6a} \ln\!\left| \frac{a^2 \mp ax + x^2}{(a \pm x)^2} \right| \pm \frac{1}{a\sqrt{3}} \arctan\!\left( \frac{2x \mp a}{a\sqrt{3}} \right).

xdxX2=x23a3X+13a3xdxX.\int \frac{x \, dx}{X^2} = \frac{x^2}{3a^3 X} + \frac{1}{3a^3} \int \frac{x \, dx}{X}.


III. Integrals with x2x^2 in the Numerator

x2dxX=±13lnX.\int \frac{x^2 \, dx}{X} = \pm \frac{1}{3} \ln |X|.

x2dxX2=13X.\int \frac{x^2 \, dx}{X^2} = \mp \frac{1}{3X}.


IV. Integrals with x3x^3 in the Numerator

x3dxX=±xa3dxX.\int \frac{x^3 \, dx}{X} = \pm x \mp a^3 \int \frac{dx}{X}.

x3dxX2=±x3X±13dxX.\int \frac{x^3 \, dx}{X^2} = \pm \frac{x}{3X} \pm \frac{1}{3} \int \frac{dx}{X}.


V. Integrals with xx in the Denominator

dxxX=13a3ln ⁣x3X.\int \frac{dx}{x X} = \frac{1}{3a^3} \ln\!\left| \frac{x^3}{X} \right|.

dxxX2=13a3X+13a6ln ⁣x3X.\int \frac{dx}{x X^2} = \frac{1}{3a^3 X} + \frac{1}{3a^6} \ln\!\left| \frac{x^3}{X} \right|.


VI. Integrals with x2x^2 in the Denominator

dxx2X=1a3x1a3xdxX.\int \frac{dx}{x^2 X} = -\frac{1}{a^3 x} \mp \frac{1}{a^3} \int \frac{x \, dx}{X}.

dxx2X2=1a6xx23a6X43a6xdxX.\int \frac{dx}{x^2 X^2} = -\frac{1}{a^6 x} \mp \frac{x^2}{3a^6 X} \mp \frac{4}{3a^6} \int \frac{x \, dx}{X}.


VII. Integrals with x3x^3 in the Denominator

dxx3X=12a3x21a3dxX.\int \frac{dx}{x^3 X} = -\frac{1}{2a^3 x^2} \mp \frac{1}{a^3} \int \frac{dx}{X}.

dxx3X2=12a6x2x3a6X53a6dxX.\int \frac{dx}{x^3 X^2} = -\frac{1}{2a^6 x^2} \mp \frac{x}{3a^6 X} \mp \frac{5}{3a^6} \int \frac{dx}{X}.

Integrals Involving a4±x4a^4 \pm x^4


I. Integrals with a4+x4a^4 + x^4

dxa4+x4=14a32ln ⁣(x2+a2x+a2x2a2x+a2)+12a32arctan ⁣(a2xa2x2).\int \frac{dx}{a^4 + x^4} = \frac{1}{4a^3\sqrt{2}} \ln\!\left( \frac{x^2 + a\sqrt{2}\,x + a^2}{x^2 - a\sqrt{2}\,x + a^2} \right) + \frac{1}{2a^3\sqrt{2}} \arctan\!\left( \frac{a\sqrt{2}\,x}{a^2 - x^2} \right).

xdxa4+x4=12a2arctan ⁣(x2a2).\int \frac{x \, dx}{a^4 + x^4} = \frac{1}{2a^2} \arctan\!\left( \frac{x^2}{a^2} \right).

x2dxa4+x4=14a2ln ⁣(x2+a2x+a2x2a2x+a2)+12a2arctan ⁣(a2xa2x2).\int \frac{x^2 \, dx}{a^4 + x^4} = -\frac{1}{4a\sqrt{2}} \ln\!\left( \frac{x^2 + a\sqrt{2}\,x + a^2}{x^2 - a\sqrt{2}\,x + a^2} \right) + \frac{1}{2a\sqrt{2}} \arctan\!\left( \frac{a\sqrt{2}\,x}{a^2 - x^2} \right).

x3dxa4+x4=14ln ⁣(a4+x4).\int \frac{x^3 \, dx}{a^4 + x^4} = \frac{1}{4} \ln\!\left( a^4 + x^4 \right).


II. Integrals with a4x4a^4 - x^4

dxa4x4=14a3ln ⁣a+xax+12a3arctan ⁣(xa).\int \frac{dx}{a^4 - x^4} = \frac{1}{4a^3} \ln\!\left| \frac{a + x}{a - x} \right| + \frac{1}{2a^3} \arctan\!\left( \frac{x}{a} \right).

xdxa4x4=14a2ln ⁣a2+x2a2x2.\int \frac{x \, dx}{a^4 - x^4} = \frac{1}{4a^2} \ln\!\left| \frac{a^2 + x^2}{a^2 - x^2} \right|.

x2dxa4x4=14aln ⁣a+xax12aarctan ⁣(xa).\int \frac{x^2 \, dx}{a^4 - x^4} = \frac{1}{4a} \ln\!\left| \frac{a + x}{a - x} \right| - \frac{1}{2a} \arctan\!\left( \frac{x}{a} \right).

x3dxa4x4=14ln ⁣a4x4.\int \frac{x^3 \, dx}{a^4 - x^4} = -\frac{1}{4} \ln\!\left| a^4 - x^4 \right|.


III. Partial Fraction Decomposition (Special Cases)

  1. Distinct linear factors:

1(a+bx)(f+gx)=1bfag(ba+bxgf+gx),\frac{1}{(a + bx)(f + gx)} = \frac{1}{bf - ag} \left( \frac{b}{a + bx} - \frac{g}{f + gx} \right),

assuming bfag0bf - ag \neq 0. 106) Three distinct linear factors:

1(x+a)(x+b)(x+c)=Ax+a+Bx+b+Cx+c,\frac{1}{(x + a)(x + b)(x + c)} = \frac{A}{x + a} + \frac{B}{x + b} + \frac{C}{x + c},

with

A=1(ba)(ca),B=1(ab)(cb),C=1(ac)(bc).A = \frac{1}{(b - a)(c - a)}, \quad B = \frac{1}{(a - b)(c - b)}, \quad C = \frac{1}{(a - c)(b - c)}.

  1. Four distinct linear factors:

1(x+a)(x+b)(x+c)(x+d)=Ax+a+Bx+b+Cx+c+Dx+d,\frac{1}{(x + a)(x + b)(x + c)(x + d)} = \frac{A}{x + a} + \frac{B}{x + b} + \frac{C}{x + c} + \frac{D}{x + d},

with

A=1(ba)(ca)(da),B=1(ab)(cb)(db),A = \frac{1}{(b - a)(c - a)(d - a)}, \quad B = \frac{1}{(a - b)(c - b)(d - b)},

C=1(ac)(bc)(dc),D=1(ad)(bd)(cd).C = \frac{1}{(a - c)(b - c)(d - c)}, \quad D = \frac{1}{(a - d)(b - d)(c - d)}.

  1. Irreducible quadratic factors:

1(a+bx2)(f+gx2)=1bfag(ba+bx2gf+gx2),\frac{1}{(a + bx^2)(f + gx^2)} = \frac{1}{bf - ag} \left( \frac{b}{a + bx^2} - \frac{g}{f + gx^2} \right),

assuming bfag0bf - ag \neq 0.