equationzone

Elementary Algebra

Preliminary Notions

A complete summary of preliminary notions in pre-university algebra, including basic operations (addition, subtraction, multiplication, division), sign rules, exponent properties, notable equivalences, and fundamental theorems. Ideal for quick review or reference during pre-university studies.

Tip

Distributive Property

a(b+c)=ab+aca(b + c) = ab + ac

Tip

(+)(+)=(+)(+) \cdot (+) = (+)

()(+)=()(-) \cdot (+) = (-)

(+)()=()(+) \cdot (-) = (-)

()()=(+)(-) \cdot (-) = (+)

Tip

Associative Property

a(bc)=(ab)ca \cdot (b \cdot c) = (a \cdot b) \cdot c

Exponent Properties

aman=am+na^{m} \cdot a^{n} = a^{m+n}

(ab)n=anbn(a \cdot b)^{n} = a^{n} \cdot b^{n}

(am)n=amn(a^m)^n = a^{m \cdot n}

(aαbβ)n=aαnbβn(a^{\alpha} \cdot b^{\beta})^n = a^{\alpha n} \cdot b^{\beta n}

(a±b)2=a2±2ab+b2(a \pm b)^2 = a^2 \pm 2ab + b^2

(a+b)(ab)=a2b2(a+b)(a-b) = a^2 - b^2

(x+a)(x+b)=x2+(a+b)x+ab(x+a)(x+b) = x^2 + (a+b)x + ab

Tip

(+)(+)=(+)\frac{(+)}{(+)} = (+)

()(+)=()\frac{(-)}{(+)} = (-)

(+)()=()\frac{(+)}{(-)} = (-)

()()=(+)\frac{(-)}{(-)} = (+)

Exponent Properties

aman=amn(a0)\frac{a^{m}}{a^{n}} = a^{m-n} \quad (a \neq 0)

(ab)n=anbn(b0)\left( \frac{a}{b} \right)^n = \frac{a^n}{b^n} \quad (b \neq 0)

(aαbβ)n=aαnbβn(b0)\left( \frac{a^\alpha}{b^\beta} \right)^n = \frac{a^{\alpha n}}{b^{\beta n}} \quad (b \neq 0)

Tip

Inverses

an=1ana0a^{-n} = \frac{1}{a^n} \quad \text{; } a \neq 0

0n0^{-n} is undefined for n>0n > 0.

Tip

Distributive Property

a+bc=ac+bc(c0)\frac{a + b}{c} = \frac{a}{c} + \frac{b}{c} \quad (c \neq 0)

Operations with Fractions

Condition: y,z,w,k0y, z, w, k \neq 0

xy=x(1y)\frac{x}{y} = x \left( \frac{1}{y} \right)

(xy)(wk)=xwyk\left( \frac{x}{y} \right) \left( \frac{w}{k} \right) = \frac{xw}{yk}

xywx=yw\frac{xy}{wx} = \frac{y}{w}

xy+zy=x+zy\frac{x}{y} + \frac{z}{y} = \frac{x + z}{y}

xy+wz=xz+ywyz\frac{x}{y} + \frac{w}{z} = \frac{xz + yw}{yz}

xy÷wz=xzyw\frac{x}{y} \div \frac{w}{z} = \frac{xz}{yw}

x+yw=xw+ywx + \frac{y}{w} = \frac{xw + y}{w}

Key Restriction

Division by zero is undefined. All denominators must be 0\neq 0.

ab=ab=ab-\frac{a}{b} = \frac{-a}{b} = \frac{a}{-b}

a+bc+xy=a+bcy+xy=a+bycy+x(cy+x0)a+\frac{b}{c+\dfrac{x}{y}}=a+\frac{b}{\dfrac{cy+x}{y}}=a+\frac{by}{cy+x} \quad (cy + x \neq 0)

Concept Symbol Concept Symbol Concept Symbol
plus + greater than >> there exists at least one \exists
minus - less than << there exists exactly one !\exists!
multiplication \cdot greater than or equal to \geq there does not exist \nexists
division ÷\div less than or equal to \leq therefore \rightarrow
equals = belongs to \in if and only if \leftrightarrow
not equal \neq does not belong to \notin negation (not) \sim
identical to \equiv subset or equal to \subseteq logical AND \land
not identical to ≢\not\equiv proper subset \subset logical OR \lor
approximately equal \approx not a subset ⊄\not\subset set of natural numbers N\mathbb{N}
infinity \infty empty set \varnothing set of integers Z\mathbb{Z}
positive infinity ++\infty open interval (a,b)(a,b) (a,b)(a,b) set of rational numbers Q\mathbb{Q}
negative infinity -\infty closed interval [a,b][a,b] [a,b][a,b] set of irrational numbers I\mathbb{I}
union \cup half-open interval [a,b)[a,b) [a,b)[a,b) set of real numbers R\mathbb{R}
intersection \cap real number line (,)(-\infty, \infty) set of complex numbers C\mathbb{C}
therefore \therefore summation \sum factorial n!n!
because \because product \prod absolute value of xx x\lvert x \rvert
parallel \parallel square root \sqrt{} floor of xx (greatest integer ≤ xx) x\lfloor x \rfloor
not parallel \nparallel exponentiation aba^b percentage %\%
such that \mid for all \forall multiple of xx x˙\dot{x}