equationzone

Elementary Algebra

Logarithms

This material covers the topic of logarithms within the context of pre-university algebra, including their definition, fundamental properties, systems of logarithms (decimal and natural), change of base, and applications in equations and inequalities. It contains essential formulas, brief proofs, and theoretical examples to strengthen the understanding of logarithmic functions and their use in advanced mathematical problems. Ideal for students preparing for university entrance exams or reinforcing key algebra concepts.

Hint

The logarithm of a number a>0a > 0 with base bb (where b>0b > 0, b1b \neq 1) is the exponent cc to which bb must be raised to obtain aa:

logba=cbc=a\log_b a = c \quad \Leftrightarrow \quad b^c = a

  • Domain: a(0,+)a \in (0, +\infty)
  • Range: cRc \in \mathbb{R}
  • Restrictions:

    b>0,b1b > 0, \quad b \neq 1

logbb=1\log_b b = 1

Examples
  • log22=1\log_2 2 = 1
  • log1010=1\log_{10} 10 = 1
  • log55=1\log_5 5 = 1
  • logee=1\log_e e = 1
  • log100100=1\log_{100} 100 = 1
  • log33=1\log_{\sqrt{3}} \sqrt{3} = 1

Logarithm of 1 in Any Base Is Zero

logb1=0\log_b 1 = 0

Examples
  • log21=0\log_2 1 = 0
  • log101=0\log_{10} 1 = 0
  • log51=0\log_5 1 = 0
  • loge1=0\log_e 1 = 0 (i.e., ln1=0\ln 1 = 0)
  • log1001=0\log_{100} 1 = 0
  • log31=0\log_{\sqrt{3}} 1 = 0

Logarithm of a Product (Same Base)

logb(xy)=logbx+logby\log_b (xy) = \log_b x + \log_b y

Examples
  • log2(48)=log24+log28\log_2 (4 \cdot 8) = \log_2 4 + \log_2 8
  • log3(927)=log39+log327\log_3 (9 \cdot 27) = \log_3 9 + \log_3 27
  • log10(52)=log105+log102\log_{10} (5 \cdot 2) = \log_{10} 5 + \log_{10} 2
  • ln(ee2)=lne+lne2\ln (e \cdot e^2) = \ln e + \ln e^2
  • log5(25125)=log525+log5125\log_5 (25 \cdot 125) = \log_5 25 + \log_5 125
  • log6(636)=log66+log636\log_6 (6 \cdot 36) = \log_6 6 + \log_6 36

Logarithm of a Quotient (Same Base)

logb(xy)=logbxlogby\log_b \left(\frac{x}{y}\right) = \log_b x - \log_b y

Examples
  • log2(82)=log28log22\log_2 \left(\frac{8}{2}\right) = \log_2 8 - \log_2 2
  • log3(279)=log327log39\log_3 \left(\frac{27}{9}\right) = \log_3 27 - \log_3 9
  • log10(100010)=log101000log1010\log_{10} \left(\frac{1000}{10}\right) = \log_{10} 1000 - \log_{10} 10
  • ln(e5e2)=lne5lne2\ln \left(\frac{e^5}{e^2}\right) = \ln e^5 - \ln e^2
  • log5(12525)=log5125log525\log_5 \left(\frac{125}{25}\right) = \log_5 125 - \log_5 25
  • log6(366)=log636log66\log_6 \left(\frac{36}{6}\right) = \log_6 36 - \log_6 6

logb(xn)=nlogbx\log_b (x^n) = n \log_b x

Examples
  • log2(43)=3log24\log_2 (4^3) = 3 \log_2 4
  • log3(92)=2log39\log_3 (9^2) = 2 \log_3 9
  • log10(1004)=4log10100\log_{10} (100^4) = 4 \log_{10} 100
  • ln(e7)=7lne\ln (e^7) = 7 \ln e
  • log5(253)=3log525\log_5 (25^3) = 3 \log_5 25
  • log6(65)=5log66\log_6 (6^5) = 5 \log_6 6

logbxn=1nlogbx\log_b \sqrt[n]{x} = \frac{1}{n} \log_b x

Examples
  • log283=13log28\log_2 \sqrt[3]{8} = \frac{1}{3} \log_2 8
  • log39=12log39\log_3 \sqrt{9} = \frac{1}{2} \log_3 9
  • log10100004=14log1010000\log_{10} \sqrt[4]{10000} = \frac{1}{4} \log_{10} 10000
  • lne105=15lne10\ln \sqrt[5]{e^{10}} = \frac{1}{5} \ln e^{10}
  • log51253=13log5125\log_5 \sqrt[3]{125} = \frac{1}{3} \log_5 125
  • log636=12log636\log_6 \sqrt{36} = \frac{1}{2} \log_6 36

Logarithm with Exponential Base and Argument

logbmxn=nmlogbx\log_{b^m} x^n = \frac{n}{m} \log_b x

Examples
  • log2382=23log28\log_{2^3} 8^2 = \frac{2}{3} \log_2 8
  • log1021004=42log10100\log_{10^2} 100^4 = \frac{4}{2} \log_{10} 100
  • log3492=24log39\log_{3^4} 9^2 = \frac{2}{4} \log_3 9
  • loge5e7=75lne\log_{e^5} e^7 = \frac{7}{5} \ln e
  • log52253=32log525\log_{5^2} 25^3 = \frac{3}{2} \log_5 25
  • log6663=36log66\log_{6^6} 6^3 = \frac{3}{6} \log_6 6

Equivalence of Logarithmic Expressions

logbx=logbnxn=logbmxm\log_{b} x = \log_{b^n} x^n = \log_{\sqrt[m]{b}} \sqrt[m]{x}

logbylogyalogax=logbx\log_{b} y \cdot \log_{y} a \cdot \log_{a} x = \log_{b} x

Examples
  • log24log48log816=log216\log_{2} 4 \cdot \log_{4} 8 \cdot \log_{8} 16 = \log_{2} 16
  • log39log927log273=log33\log_{3} 9 \cdot \log_{9} 27 \cdot \log_{27} 3 = \log_{3} 3
  • log10100log1001000log100010=log1010\log_{10} 100 \cdot \log_{100} 1000 \cdot \log_{1000} 10 = \log_{10} 10
  • log525log25125log125625=log5625\log_{5} 25 \cdot \log_{25} 125 \cdot \log_{125} 625 = \log_{5} 625
  • ln2log2eloge4=ln4\ln 2 \cdot \log_{2} e \cdot \log_{e} 4 = \ln 4
  • log636log366log6216=log6216\log_{6} 36 \cdot \log_{36} 6 \cdot \log_{6} 216 = \log_{6} 216

logbxlogxb=1\log_{b} x \cdot \log_{x} b = 1

logbx=1logxb\log_{b} x = \frac{1}{\log_{x} b}

logba=logkalogkb(k>0,k1)\log_b a = \frac{\log_k a}{\log_k b} \quad (k > 0, \, k \neq 1)

xlogby=ylogbxx^{\log_b y} = y^{\log_b x}

blogbx=xb^{\log_b x} = x

Defined as the logarithm of the reciprocal of a number:

cologbx=logb(1x)=logbx;x>0,b>0,b1\operatorname{colog}_b x = \log_b \left(\frac{1}{x}\right) = -\log_b x; \quad x > 0, \, b > 0, \, b \neq 1

Examples
  • colog102=log10(12)=log1020.3010\operatorname{colog}_{10} 2 = \log_{10} \left(\frac{1}{2}\right) = -\log_{10} 2 \approx -0.3010
  • colog28=log2(18)=log28=3\operatorname{colog}_{2} 8 = \log_{2} \left(\frac{1}{8}\right) = -\log_{2} 8 = -3
  • cologe5=ln(15)=ln51.6094\operatorname{colog}_{e} 5 = \ln \left(\frac{1}{5}\right) = -\ln 5 \approx -1.6094
  • colog39=log3(19)=log39=2\operatorname{colog}_{3} 9 = \log_{3} \left(\frac{1}{9}\right) = -\log_{3} 9 = -2
  • colog525=log5(125)=log525=2\operatorname{colog}_{5} 25 = \log_{5} \left(\frac{1}{25}\right) = -\log_{5} 25 = -2
  • colog416=log4(116)=log416=2\operatorname{colog}_{4} 16 = \log_{4} \left(\frac{1}{16}\right) = -\log_{4} 16 = -2

The inverse operation of the logarithm:

antilogbx=bx;b>0,b1,xR\operatorname{antilog}_b x = b^x; \quad b > 0, \, b \neq 1, \, x \in \mathbb{R}

Examples
  • antilog102=102=100\operatorname{antilog}_{10} 2 = 10^2 = 100
  • antilog23=23=8\operatorname{antilog}_{2} 3 = 2^3 = 8
  • antiloge1=e12.7183\operatorname{antilog}_{e} 1 = e^1 \approx 2.7183
  • antilog34=34=81\operatorname{antilog}_{3} 4 = 3^4 = 81
  • antilog50=50=1\operatorname{antilog}_{5} 0 = 5^0 = 1
  • antilog10(1)=101=0.1\operatorname{antilog}_{10} (-1) = 10^{-1} = 0.1

antilogb(logbx)=x\operatorname{antilog}_b (\log_{b}x) = x

logb(antilogbx)=x\log_{b} (\operatorname{antilog}_b x) = x

  1. Common logarithm (base 10):

    log10xlogx;x>0\log_{10} x \equiv \log x; \quad x > 0

  2. Natural logarithm (base ee):

    logex=lnx;x>0\log_e x = \ln x; \quad x > 0

    lne=1\ln e = 1

logba=lnalnb=logalogb\log_b a = \frac{\ln a}{\ln b} = \frac{\log a}{\log b}

To convert between any bases mm and nn:

logba=logmalogmb=lognalognb\log_b a = \frac{\log_{m} a}{\log_{m} b} = \frac{\log_{n} a}{\log_{n} b}

  1. Basic equation:

    logbf(x)=cf(x)=bc\log_b f(x) = c \quad \Rightarrow \quad f(x) = b^c

  2. Same-base equation:

    logbf(x)=logbg(x)f(x)=g(x)\log_b f(x) = \log_b g(x) \quad \Rightarrow \quad f(x) = g(x)

Consider the base:

  1. If b>1b > 1 (logarithmic function is increasing):

    logbf(x)>logbg(x)f(x)>g(x)>0\log_b f(x) > \log_b g(x) \quad \Rightarrow \quad f(x) > g(x) > 0

  2. If 0<b<10 < b < 1 (logarithmic function is decreasing):

    logbf(x)>logbg(x)0<f(x)<g(x)\log_b f(x) > \log_b g(x) \quad \Rightarrow \quad 0 < f(x) < g(x)