This material covers the topic of logarithms within the context of pre-university algebra, including their definition, fundamental properties, systems of logarithms (decimal and natural), change of base, and applications in equations and inequalities. It contains essential formulas, brief proofs, and theoretical examples to strengthen the understanding of logarithmic functions and their use in advanced mathematical problems. Ideal for students preparing for university entrance exams or reinforcing key algebra concepts.
The logarithm of a number a > 0 a > 0 a > 0 with base b b b (where b > 0 b > 0 b > 0 , b ≠ 1 b \neq 1 b = 1 ) is the exponent c c c to which b b b must be raised to obtain a a a :
log b a = c ⇔ b c = a \log_b a = c \quad \Leftrightarrow \quad b^c = a
log b a = c ⇔ b c = a
log b b = 1 \log_b b = 1
log b b = 1
log 2 2 = 1 \log_2 2 = 1 log 2 2 = 1
log 10 10 = 1 \log_{10} 10 = 1 log 10 10 = 1
log 5 5 = 1 \log_5 5 = 1 log 5 5 = 1
log e e = 1 \log_e e = 1 log e e = 1
log 100 100 = 1 \log_{100} 100 = 1 log 100 100 = 1
log 3 3 = 1 \log_{\sqrt{3}} \sqrt{3} = 1 log 3 3 = 1
log b 1 = 0 \log_b 1 = 0
log b 1 = 0
log 2 1 = 0 \log_2 1 = 0 log 2 1 = 0
log 10 1 = 0 \log_{10} 1 = 0 log 10 1 = 0
log 5 1 = 0 \log_5 1 = 0 log 5 1 = 0
log e 1 = 0 \log_e 1 = 0 log e 1 = 0 (i.e., ln 1 = 0 \ln 1 = 0 ln 1 = 0 )
log 100 1 = 0 \log_{100} 1 = 0 log 100 1 = 0
log 3 1 = 0 \log_{\sqrt{3}} 1 = 0 log 3 1 = 0
log b ( x y ) = log b x + log b y \log_b (xy) = \log_b x + \log_b y
log b ( x y ) = log b x + log b y
log 2 ( 4 ⋅ 8 ) = log 2 4 + log 2 8 \log_2 (4 \cdot 8) = \log_2 4 + \log_2 8 log 2 ( 4 ⋅ 8 ) = log 2 4 + log 2 8
log 3 ( 9 ⋅ 27 ) = log 3 9 + log 3 27 \log_3 (9 \cdot 27) = \log_3 9 + \log_3 27 log 3 ( 9 ⋅ 27 ) = log 3 9 + log 3 27
log 10 ( 5 ⋅ 2 ) = log 10 5 + log 10 2 \log_{10} (5 \cdot 2) = \log_{10} 5 + \log_{10} 2 log 10 ( 5 ⋅ 2 ) = log 10 5 + log 10 2
ln ( e ⋅ e 2 ) = ln e + ln e 2 \ln (e \cdot e^2) = \ln e + \ln e^2 ln ( e ⋅ e 2 ) = ln e + ln e 2
log 5 ( 25 ⋅ 125 ) = log 5 25 + log 5 125 \log_5 (25 \cdot 125) = \log_5 25 + \log_5 125 log 5 ( 25 ⋅ 125 ) = log 5 25 + log 5 125
log 6 ( 6 ⋅ 36 ) = log 6 6 + log 6 36 \log_6 (6 \cdot 36) = \log_6 6 + \log_6 36 log 6 ( 6 ⋅ 36 ) = log 6 6 + log 6 36
log b ( x y ) = log b x − log b y \log_b \left(\frac{x}{y}\right) = \log_b x - \log_b y
log b ( y x ) = log b x − log b y
log 2 ( 8 2 ) = log 2 8 − log 2 2 \log_2 \left(\frac{8}{2}\right) = \log_2 8 - \log_2 2 log 2 ( 2 8 ) = log 2 8 − log 2 2
log 3 ( 27 9 ) = log 3 27 − log 3 9 \log_3 \left(\frac{27}{9}\right) = \log_3 27 - \log_3 9 log 3 ( 9 27 ) = log 3 27 − log 3 9
log 10 ( 1000 10 ) = log 10 1000 − log 10 10 \log_{10} \left(\frac{1000}{10}\right) = \log_{10} 1000 - \log_{10} 10 log 10 ( 10 1000 ) = log 10 1000 − log 10 10
ln ( e 5 e 2 ) = ln e 5 − ln e 2 \ln \left(\frac{e^5}{e^2}\right) = \ln e^5 - \ln e^2 ln ( e 2 e 5 ) = ln e 5 − ln e 2
log 5 ( 125 25 ) = log 5 125 − log 5 25 \log_5 \left(\frac{125}{25}\right) = \log_5 125 - \log_5 25 log 5 ( 25 125 ) = log 5 125 − log 5 25
log 6 ( 36 6 ) = log 6 36 − log 6 6 \log_6 \left(\frac{36}{6}\right) = \log_6 36 - \log_6 6 log 6 ( 6 36 ) = log 6 36 − log 6 6
log b ( x n ) = n log b x \log_b (x^n) = n \log_b x
log b ( x n ) = n log b x
log 2 ( 4 3 ) = 3 log 2 4 \log_2 (4^3) = 3 \log_2 4 log 2 ( 4 3 ) = 3 log 2 4
log 3 ( 9 2 ) = 2 log 3 9 \log_3 (9^2) = 2 \log_3 9 log 3 ( 9 2 ) = 2 log 3 9
log 10 ( 100 4 ) = 4 log 10 100 \log_{10} (100^4) = 4 \log_{10} 100 log 10 ( 10 0 4 ) = 4 log 10 100
ln ( e 7 ) = 7 ln e \ln (e^7) = 7 \ln e ln ( e 7 ) = 7 ln e
log 5 ( 25 3 ) = 3 log 5 25 \log_5 (25^3) = 3 \log_5 25 log 5 ( 2 5 3 ) = 3 log 5 25
log 6 ( 6 5 ) = 5 log 6 6 \log_6 (6^5) = 5 \log_6 6 log 6 ( 6 5 ) = 5 log 6 6
log b x n = 1 n log b x \log_b \sqrt[n]{x} = \frac{1}{n} \log_b x
log b n x = n 1 log b x
log 2 8 3 = 1 3 log 2 8 \log_2 \sqrt[3]{8} = \frac{1}{3} \log_2 8 log 2 3 8 = 3 1 log 2 8
log 3 9 = 1 2 log 3 9 \log_3 \sqrt{9} = \frac{1}{2} \log_3 9 log 3 9 = 2 1 log 3 9
log 10 10000 4 = 1 4 log 10 10000 \log_{10} \sqrt[4]{10000} = \frac{1}{4} \log_{10} 10000 log 10 4 10000 = 4 1 log 10 10000
ln e 10 5 = 1 5 ln e 10 \ln \sqrt[5]{e^{10}} = \frac{1}{5} \ln e^{10} ln 5 e 10 = 5 1 ln e 10
log 5 125 3 = 1 3 log 5 125 \log_5 \sqrt[3]{125} = \frac{1}{3} \log_5 125 log 5 3 125 = 3 1 log 5 125
log 6 36 = 1 2 log 6 36 \log_6 \sqrt{36} = \frac{1}{2} \log_6 36 log 6 36 = 2 1 log 6 36
log b m x n = n m log b x \log_{b^m} x^n = \frac{n}{m} \log_b x
log b m x n = m n log b x
log 2 3 8 2 = 2 3 log 2 8 \log_{2^3} 8^2 = \frac{2}{3} \log_2 8 log 2 3 8 2 = 3 2 log 2 8
log 10 2 100 4 = 4 2 log 10 100 \log_{10^2} 100^4 = \frac{4}{2} \log_{10} 100 log 1 0 2 10 0 4 = 2 4 log 10 100
log 3 4 9 2 = 2 4 log 3 9 \log_{3^4} 9^2 = \frac{2}{4} \log_3 9 log 3 4 9 2 = 4 2 log 3 9
log e 5 e 7 = 7 5 ln e \log_{e^5} e^7 = \frac{7}{5} \ln e log e 5 e 7 = 5 7 ln e
log 5 2 25 3 = 3 2 log 5 25 \log_{5^2} 25^3 = \frac{3}{2} \log_5 25 log 5 2 2 5 3 = 2 3 log 5 25
log 6 6 6 3 = 3 6 log 6 6 \log_{6^6} 6^3 = \frac{3}{6} \log_6 6 log 6 6 6 3 = 6 3 log 6 6
log b x = log b n x n = log b m x m \log_{b} x = \log_{b^n} x^n = \log_{\sqrt[m]{b}} \sqrt[m]{x}
log b x = log b n x n = log m b m x
log b y ⋅ log y a ⋅ log a x = log b x \log_{b} y \cdot \log_{y} a \cdot \log_{a} x = \log_{b} x
log b y ⋅ log y a ⋅ log a x = log b x
log 2 4 ⋅ log 4 8 ⋅ log 8 16 = log 2 16 \log_{2} 4 \cdot \log_{4} 8 \cdot \log_{8} 16 = \log_{2} 16 log 2 4 ⋅ log 4 8 ⋅ log 8 16 = log 2 16
log 3 9 ⋅ log 9 27 ⋅ log 27 3 = log 3 3 \log_{3} 9 \cdot \log_{9} 27 \cdot \log_{27} 3 = \log_{3} 3 log 3 9 ⋅ log 9 27 ⋅ log 27 3 = log 3 3
log 10 100 ⋅ log 100 1000 ⋅ log 1000 10 = log 10 10 \log_{10} 100 \cdot \log_{100} 1000 \cdot \log_{1000} 10 = \log_{10} 10 log 10 100 ⋅ log 100 1000 ⋅ log 1000 10 = log 10 10
log 5 25 ⋅ log 25 125 ⋅ log 125 625 = log 5 625 \log_{5} 25 \cdot \log_{25} 125 \cdot \log_{125} 625 = \log_{5} 625 log 5 25 ⋅ log 25 125 ⋅ log 125 625 = log 5 625
ln 2 ⋅ log 2 e ⋅ log e 4 = ln 4 \ln 2 \cdot \log_{2} e \cdot \log_{e} 4 = \ln 4 ln 2 ⋅ log 2 e ⋅ log e 4 = ln 4
log 6 36 ⋅ log 36 6 ⋅ log 6 216 = log 6 216 \log_{6} 36 \cdot \log_{36} 6 \cdot \log_{6} 216 = \log_{6} 216 log 6 36 ⋅ log 36 6 ⋅ log 6 216 = log 6 216
log b x ⋅ log x b = 1 \log_{b} x \cdot \log_{x} b = 1
log b x ⋅ log x b = 1
log b x = 1 log x b \log_{b} x = \frac{1}{\log_{x} b}
log b x = log x b 1
log b a = log k a log k b ( k > 0 , k ≠ 1 ) \log_b a = \frac{\log_k a}{\log_k b} \quad (k > 0, \, k \neq 1)
log b a = log k b log k a ( k > 0 , k = 1 )
x log b y = y log b x x^{\log_b y} = y^{\log_b x}
x l o g b y = y l o g b x
b log b x = x b^{\log_b x} = x
b l o g b x = x
Defined as the logarithm of the reciprocal of a number:
colog b x = log b ( 1 x ) = − log b x ; x > 0 , b > 0 , b ≠ 1 \operatorname{colog}_b x = \log_b \left(\frac{1}{x}\right) = -\log_b x; \quad x > 0, \, b > 0, \, b \neq 1
colog b x = log b ( x 1 ) = − log b x ; x > 0 , b > 0 , b = 1
colog 10 2 = log 10 ( 1 2 ) = − log 10 2 ≈ − 0.3010 \operatorname{colog}_{10} 2 = \log_{10} \left(\frac{1}{2}\right) = -\log_{10} 2 \approx -0.3010 colog 10 2 = log 10 ( 2 1 ) = − log 10 2 ≈ − 0.3010
colog 2 8 = log 2 ( 1 8 ) = − log 2 8 = − 3 \operatorname{colog}_{2} 8 = \log_{2} \left(\frac{1}{8}\right) = -\log_{2} 8 = -3 colog 2 8 = log 2 ( 8 1 ) = − log 2 8 = − 3
colog e 5 = ln ( 1 5 ) = − ln 5 ≈ − 1.6094 \operatorname{colog}_{e} 5 = \ln \left(\frac{1}{5}\right) = -\ln 5 \approx -1.6094 colog e 5 = ln ( 5 1 ) = − ln 5 ≈ − 1.6094
colog 3 9 = log 3 ( 1 9 ) = − log 3 9 = − 2 \operatorname{colog}_{3} 9 = \log_{3} \left(\frac{1}{9}\right) = -\log_{3} 9 = -2 colog 3 9 = log 3 ( 9 1 ) = − log 3 9 = − 2
colog 5 25 = log 5 ( 1 25 ) = − log 5 25 = − 2 \operatorname{colog}_{5} 25 = \log_{5} \left(\frac{1}{25}\right) = -\log_{5} 25 = -2 colog 5 25 = log 5 ( 25 1 ) = − log 5 25 = − 2
colog 4 16 = log 4 ( 1 16 ) = − log 4 16 = − 2 \operatorname{colog}_{4} 16 = \log_{4} \left(\frac{1}{16}\right) = -\log_{4} 16 = -2 colog 4 16 = log 4 ( 16 1 ) = − log 4 16 = − 2
The inverse operation of the logarithm:
antilog b x = b x ; b > 0 , b ≠ 1 , x ∈ R \operatorname{antilog}_b x = b^x; \quad b > 0, \, b \neq 1, \, x \in \mathbb{R}
antilog b x = b x ; b > 0 , b = 1 , x ∈ R
antilog 10 2 = 10 2 = 100 \operatorname{antilog}_{10} 2 = 10^2 = 100 antilog 10 2 = 1 0 2 = 100
antilog 2 3 = 2 3 = 8 \operatorname{antilog}_{2} 3 = 2^3 = 8 antilog 2 3 = 2 3 = 8
antilog e 1 = e 1 ≈ 2.7183 \operatorname{antilog}_{e} 1 = e^1 \approx 2.7183 antilog e 1 = e 1 ≈ 2.7183
antilog 3 4 = 3 4 = 81 \operatorname{antilog}_{3} 4 = 3^4 = 81 antilog 3 4 = 3 4 = 81
antilog 5 0 = 5 0 = 1 \operatorname{antilog}_{5} 0 = 5^0 = 1 antilog 5 0 = 5 0 = 1
antilog 10 ( − 1 ) = 10 − 1 = 0.1 \operatorname{antilog}_{10} (-1) = 10^{-1} = 0.1 antilog 10 ( − 1 ) = 1 0 − 1 = 0.1
antilog b ( log b x ) = x \operatorname{antilog}_b (\log_{b}x) = x
antilog b ( log b x ) = x
log b ( antilog b x ) = x \log_{b} (\operatorname{antilog}_b x) = x
log b ( antilog b x ) = x
Common logarithm (base 10):
log 10 x ≡ log x ; x > 0 \log_{10} x \equiv \log x; \quad x > 0
log 10 x ≡ log x ; x > 0
Natural logarithm (base e e e ):
log e x = ln x ; x > 0 \log_e x = \ln x; \quad x > 0
log e x = ln x ; x > 0
ln e = 1 \ln e = 1
ln e = 1
log b a = ln a ln b = log a log b \log_b a = \frac{\ln a}{\ln b} = \frac{\log a}{\log b}
log b a = ln b ln a = log b log a
To convert between any bases m m m and n n n :
log b a = log m a log m b = log n a log n b \log_b a = \frac{\log_{m} a}{\log_{m} b} = \frac{\log_{n} a}{\log_{n} b}
log b a = log m b log m a = log n b log n a
Basic equation :
log b f ( x ) = c ⇒ f ( x ) = b c \log_b f(x) = c \quad \Rightarrow \quad f(x) = b^c
log b f ( x ) = c ⇒ f ( x ) = b c
Same-base equation :
log b f ( x ) = log b g ( x ) ⇒ f ( x ) = g ( x ) \log_b f(x) = \log_b g(x) \quad \Rightarrow \quad f(x) = g(x)
log b f ( x ) = log b g ( x ) ⇒ f ( x ) = g ( x )
Consider the base:
If b > 1 b > 1 b > 1 (logarithmic function is increasing):
log b f ( x ) > log b g ( x ) ⇒ f ( x ) > g ( x ) > 0 \log_b f(x) > \log_b g(x) \quad \Rightarrow \quad f(x) > g(x) > 0
log b f ( x ) > log b g ( x ) ⇒ f ( x ) > g ( x ) > 0
If 0 < b < 1 0 < b < 1 0 < b < 1 (logarithmic function is decreasing):
log b f ( x ) > log b g ( x ) ⇒ 0 < f ( x ) < g ( x ) \log_b f(x) > \log_b g(x) \quad \Rightarrow \quad 0 < f(x) < g(x)
log b f ( x ) > log b g ( x ) ⇒ 0 < f ( x ) < g ( x )