equationzone

General Chemistry

Density

Discover what density is in chemistry: the mass/volume relationship (ρ=mV\rho = \frac{m}{V}), a key property for identifying substances, understanding buoyancy, and measuring molecular compactness. Learn its formula and units (g/cm³).

Absolute density is an intensive property that measures the concentration of mass per unit volume of a substance.

ρ=mV\boxed{\rho = \frac{m}{V}}

where:

  • ρ\rho: Absolute density [kg/m³ (SI)]
  • mm: Mass of the substance [g, kg]
  • VV: Volume occupied [cm³, m³, L]
  • Solids and liquids: g/cm³, g/mL, kg/L, lb/ft³
  • Gases: g/L, kg/m³ (at standard conditions)

1 g/cm3=1000 kg/m3=1 kg/L1 \text{ g/cm}^3 = 1000 \text{ kg/m}^3 = 1 \text{ kg/L}

1 lb/ft3=16.0185 kg/m31 \text{ lb/ft}^3 = 16.0185 \text{ kg/m}^3

Density of Some Substances at One Atmosphere of Pressure and 20°C

Densities measured at standard conditions (P = 1 atmosphere and T = 0°C)

Substance S.I. (kg/m³) Common (g/cm³)
Cork 240 0.24
Wood 500 0.50
Paper 700 0.70
NaCl 2160 2.16
Cu 8920 8.92
Au 19300 19.3
Os 22400 22.4
Lead 11300 11.3
Glass 2600 2.6
Brick (average) 1900 1.9
Hard Rubber 1200 1.2
Substance S.I. (kg/m³) Common (g/cm³)
Chloroform 1500 1.50
Ethyl Alcohol 780 0.78
Oil 800 0.80
Seawater 1040 1.04
Milk 1030 1.03
Blood 1060 1.06
Bromine 3120 3.12
Mercury 13600 13.6
Glycerin 1260 1.26
Sulfuric Acid 1840 1.84
Gasoline (approx.) 670 0.67
Substance S.I. (kg/m³) Common (g/L)
H₂ 0.09 0.09
Air 1.29 1.29
O₂ 1.43 1.43
CO₂ 1.98 1.98

For homogeneous or heterogeneous mixtures, the density is calculated as:

ρM=mtotalVtotal=mA+mB+mC+VA+VB+VC+\boxed{\rho_M = \frac{m_{\text{total}}}{V_{\text{total}}} = \frac{m_A + m_B + m_C + \cdots}{V_A + V_B + V_C + \cdots}}

When each component occupies the same volume:

ρM=ρ1+ρ2++ρnn\rho_M = \frac{\rho_1 + \rho_2 + \cdots + \rho_n}{n}

Example: Mixture of 3 liquids with equal volumes:

ρM=ρ1+ρ2+ρ33\rho_M = \frac{\rho_1 + \rho_2 + \rho_3}{3}

When each component has the same mass:

ρM=n1ρ1+1ρ2++1ρn\rho_M = \frac{n}{\frac{1}{\rho_1} + \frac{1}{\rho_2} + \cdots + \frac{1}{\rho_n}}

Example: Mixture of 2 substances with equal masses:

ρM=21ρ1+1ρ2=2ρ1ρ2ρ1+ρ2\rho_M = \frac{2}{\frac{1}{\rho_1} + \frac{1}{\rho_2}} = \frac{2\rho_1\rho_2}{\rho_1 + \rho_2}


Relative Density (Specific Gravity)

Relative density (ρᵣ or SG) is a dimensionless quantity that compares the density of a substance to a standard reference.

ρr=SG=ρsubstanceρreference\boxed{\rho_r = SG = \frac{\rho_{\text{substance}}}{\rho_{\text{reference}}}}

State Reference Substance Conditions Reference Density
Solids and liquids Pure water 4°C and 1 atm 1.000 g/cm31.000 \text{ g/cm}^3
Gases Dry air S.T.P. (0°C, 1 atm) 1.2929 g/L1.2929 \text{ g/L}
  • SG < 1: The substance is less dense than the reference (floats)
  • SG = 1: Density equal to the reference
  • SG > 1: The substance is denser than the reference (sinks)

An intensive property that relates the weight of a substance to its volume.

γ=WV=mgV=ρg\boxed{\gamma = \frac{W}{V} = \frac{mg}{V} = \rho g}

  • International System (SI): N/m³
  • Technical System: kgf/m³

γ=ρ×g\gamma = \rho \times g

Where g=9.80665 m/s2g = 9.80665 \text{ m/s}^2 (standard acceleration of gravity)


Relationship between the specific weight of a substance and that of the reference substance.

γr=ρr=SG\boxed{\gamma_r = \rho_r = SG}

Proof:

γr=γsubstγref=ρsubstgρrefg=ρsubstρref=ρr\gamma_r = \frac{\gamma_{\text{subst}}}{\gamma_{\text{ref}}} = \frac{\rho_{\text{subst}} g}{\rho_{\text{ref}} g} = \frac{\rho_{\text{subst}}}{\rho_{\text{ref}}} = \rho_r

Density of chemical elements under laboratory conditions, expressed in gcm3\frac{g}{cm^3} (elements with a density greater than osmium or iridium only have a theoretical density: superheavy radioactive elements are produced in quantities too low or decay too rapidly to allow measurement):
Density of Chemical Elements - Wikipedia

Density of the elements at their melting point in gcm3\frac{g}{cm^3}:
Density of Chemical Elements - Wikipedia